Difference between revisions of "2006 AIME A Problems/Problem 12"
m |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Equilateral <math> \triangle ABC </math> is inscribed in a circle of radius 2. Extend <math> \overline{AB} </math> through <math> B </math> to point <math> D </math> so that <math> AD=13, </math> and extend <math> \overline{AC} </math> through <math> C </math> to point <math> E </math> so that <math> AE = 11. </math> Through <math> D, </math> draw a line <math> l_1 </math> parallel to <math> \overline{AE}, </math> and through <math> E, </math> draw a line <math> l_2 </math> parallel to <math> \overline{AD}. </math> Let <math> F </math> be the intersection of <math> l_1 </math> and <math> l_2. </math> Let <math> G </math> be the point on the circle that is collinear with <math> A </math> and <math> F </math> and distinct from <math> A. </math> Given that the area of <math> \triangle CBG </math> can be expressed in the form <math> \frac{p\sqrt{q}}{r}, </math> where <math> p, q, </math> and <math> r </math> are positive | + | [[Equilateral triangle | Equilateral]] <math> \triangle ABC </math> is inscribed in a [[circle]] of [[radius]] 2. Extend <math> \overline{AB} </math> through <math> B </math> to point <math> D </math> so that <math> AD=13, </math> and extend <math> \overline{AC} </math> through <math> C </math> to point <math> E </math> so that <math> AE = 11. </math> Through <math> D, </math> draw a line <math> l_1 </math> [[parallel]] to <math> \overline{AE}, </math> and through <math> E, </math> draw a line <math> l_2 </math> parallel to <math> \overline{AD}. </math> Let <math> F </math> be the [[intersection]] of <math> l_1 </math> and <math> l_2. </math> Let <math> G </math> be the point on the circle that is [[collinear]] with <math> A </math> and <math> F </math> and distinct from <math> A. </math> Given that the [[area]] of <math> \triangle CBG </math> can be expressed in the form <math> \frac{p\sqrt{q}}{r}, </math> where <math> p, q, </math> and <math> r </math> are [[positive integer]]s, <math> p </math> and <math> r</math> are [[relatively prime]], and <math> q </math> is not [[divisibility | divisible]] by the [[perfect square | square]] of any [[prime]], find <math> p+q+r. </math> |
{{image needed}} | {{image needed}} | ||
== Solution == | == Solution == | ||
− | + | {{solution}} | |
== See also == | == See also == | ||
+ | *[[2006 AIME II Problems/Problem 11 | Previous problem]] | ||
+ | *[[2006 AIME II Problems/Problem 13 | Next problem]] | ||
*[[2006 AIME II Problems]] | *[[2006 AIME II Problems]] | ||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] |
Revision as of 17:28, 17 October 2006
Problem
Equilateral is inscribed in a circle of radius 2. Extend
through
to point
so that
and extend
through
to point
so that
Through
draw a line
parallel to
and through
draw a line
parallel to
Let
be the intersection of
and
Let
be the point on the circle that is collinear with
and
and distinct from
Given that the area of
can be expressed in the form
where
and
are positive integers,
and
are relatively prime, and
is not divisible by the square of any prime, find
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.