Difference between revisions of "1986 AIME Problems/Problem 5"
Sevenoptimus (talk | contribs) (Corrected another user's incorrect edit from 19th January 2019) |
Qwertysri987 (talk | contribs) (→Solution 2) |
||
| Line 8: | Line 8: | ||
In a similar manner, we can apply synthetic division. We are looking for <math>\frac{n^3 + 100}{n + 10} = n^2 - 10n - 100 - \frac{900}{n + 10}</math>. Again, <math>n + 10</math> must be a factor of <math>900 \Longrightarrow n = \boxed{890}</math>. | In a similar manner, we can apply synthetic division. We are looking for <math>\frac{n^3 + 100}{n + 10} = n^2 - 10n - 100 - \frac{900}{n + 10}</math>. Again, <math>n + 10</math> must be a factor of <math>900 \Longrightarrow n = \boxed{890}</math>. | ||
| + | ==Solution 3== | ||
| + | The key to this problem is to realize that <math>n+10 \mid n^3 +1000</math> for all <math>n</math>. Since we are asked to find the maximum possible <math>n</math> such that <math>n+10 \mid n^3 +100</math>, we have: <math>n+10 \mid ((n^3 +1000) - (n^3 +100) \longrightarrow n+10 \mid 900</math>. This is because of the property that states that if <math>a \mid b</math> and <math>a \mid c</math>, then <math>a \mid b \pm c</math>. Since, the largest factor of 900 is itself we have: <math>n+10=900 \Longrightarrow \boxed{n = 890}</math> | ||
| + | |||
| + | ~qwertysri987 | ||
== See also == | == See also == | ||
Revision as of 12:21, 1 July 2019
Problem
What is that largest positive integer
for which
is divisible by
?
Solution 1
If
,
. Using the Euclidean algorithm, we have
, so
must divide
. The greatest integer
for which
divides
is
; we can double-check manually and we find that indeed
.
Solution 2
In a similar manner, we can apply synthetic division. We are looking for
. Again,
must be a factor of
.
Solution 3
The key to this problem is to realize that
for all
. Since we are asked to find the maximum possible
such that
, we have:
. This is because of the property that states that if
and
, then
. Since, the largest factor of 900 is itself we have:
~qwertysri987
See also
| 1986 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.