Difference between revisions of "Mock AIME 3 Pre 2005 Problems/Problem 6"
(→Solution 2) |
(→Solution 2) |
||
| Line 23: | Line 23: | ||
&= \sum_{n=1}^{9800}\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}} \\ | &= \sum_{n=1}^{9800}\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}} \\ | ||
&= \sum_{n=1}^{9800}(\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}})\cdot(\frac{n-\sqrt{n^2-1}}{n-\sqrt{n^2-1}}) \\ | &= \sum_{n=1}^{9800}(\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}})\cdot(\frac{n-\sqrt{n^2-1}}{n-\sqrt{n^2-1}}) \\ | ||
| − | &= \sum_{n=1}^{9800} | + | &= \sum_{n=1}^{9800}(\sqrt{n+\sqrt{n^2-1})\cdot(\sqrt{n+\sqrt{n^2-1}})^2 |
\end{align*}</cmath> | \end{align*}</cmath> | ||
Revision as of 11:54, 28 November 2019
Contents
Problem
Let
denote the value of the sum
can be expressed as
, where
and
are positive integers and
is not divisible by the square of any prime. Determine
.
Solution
Notice that
. Thus, we have
This is a telescoping series; note that when we expand the summation, all of the intermediary terms cancel, leaving us with
, and
.
Solution 2
Simplifying the expression yields
\begin{align*}
S &= \sum_{n=1}^{9800}\frac{1}{\sqrt{n+\sqrt{n^2-1}}} \\
&= \sum_{n=1}^{9800}\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}} \\
&= \sum_{n=1}^{9800}(\frac{\sqrt{n+\sqrt{n^2-1}}}{n+\sqrt{n^2-1}})\cdot(\frac{n-\sqrt{n^2-1}}{n-\sqrt{n^2-1}}) \\
&= \sum_{n=1}^{9800}(\sqrt{n+\sqrt{n^2-1})\cdot(\sqrt{n+\sqrt{n^2-1}})^2
\end{align*} (Error compiling LaTeX. Unknown error_msg)
See Also
| Mock AIME 3 Pre 2005 (Problems, Source) | ||
| Preceded by Problem 5 |
Followed by Problem 7 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||