Difference between revisions of "2015 AMC 10A Problems/Problem 20"
m (→Solution) |
|||
| (4 intermediate revisions by 3 users not shown) | |||
| Line 11: | Line 11: | ||
Then <math>A + P = ab + 2a + 2b</math>. Factoring, we have <math>(a + 2)(b + 2) - 4</math>. | Then <math>A + P = ab + 2a + 2b</math>. Factoring, we have <math>(a + 2)(b + 2) - 4</math>. | ||
| − | The only one of the answer choices that cannot be expressed in this form is <math>102</math>, as <math>102 + 4</math> is twice a prime. There would then be no way to express <math> | + | The only one of the answer choices that cannot be expressed in this form is <math>102</math>, as <math>102 + 4</math> is twice a prime. There would then be no way to express <math>106</math> as <math>(a + 2)(b + 2)</math>, keeping <math>a</math> and <math>b</math> as positive integers. |
| − | Our answer is then <math>\boxed{B}</math> | + | Our answer is then <math>\boxed{B}</math>. |
Note: The original problem only stated that <math>A</math> and <math>P</math> were positive integers, not the side lengths themselves. This rendered the problem unsolvable, and so the AMC awarded everyone 6 points on this problem. This wiki has the corrected version of the problem so that the 2015 AMC 10A test can be used for practice. | Note: The original problem only stated that <math>A</math> and <math>P</math> were positive integers, not the side lengths themselves. This rendered the problem unsolvable, and so the AMC awarded everyone 6 points on this problem. This wiki has the corrected version of the problem so that the 2015 AMC 10A test can be used for practice. | ||
| + | |||
| + | ==Video Solution== | ||
| + | https://youtu.be/RLo-e2On6Ac | ||
| + | |||
| + | ~savannahsolver | ||
==See Also== | ==See Also== | ||
Latest revision as of 19:16, 17 November 2020
Contents
Problem
A rectangle with positive integer side lengths in
has area
and perimeter
. Which of the following numbers cannot equal
?
Solution
Let the rectangle's length be
and its width be
. Its area is
and the perimeter is
.
Then
. Factoring, we have
.
The only one of the answer choices that cannot be expressed in this form is
, as
is twice a prime. There would then be no way to express
as
, keeping
and
as positive integers.
Our answer is then
.
Note: The original problem only stated that
and
were positive integers, not the side lengths themselves. This rendered the problem unsolvable, and so the AMC awarded everyone 6 points on this problem. This wiki has the corrected version of the problem so that the 2015 AMC 10A test can be used for practice.
Video Solution
~savannahsolver
See Also
| 2015 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 19 |
Followed by Problem 21 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.