Difference between revisions of "2021 AMC 12B Problems/Problem 11"
Sugar rush (talk | contribs) |
Sugar rush (talk | contribs) (removed fake solve, replaced with legit solution) |
||
Line 32: | Line 32: | ||
</asy> | </asy> | ||
− | ==Solution 1 ( | + | ==Solution 1 (analytic geometry)== |
+ | Toss on the Cartesian plane with <math>A=(5, 12), B=(0, 0),</math> and <math>C=(14, 0)</math>. Then <math>\overline{AD}\parallel\overline{BC}, \overline{AB}\parallel\overline{CE}</math> by the trapezoid condition, where <math>D, E\in\overline{BP}</math>. Since <math>PC=10</math>, point <math>P</math> is <math>\tfrac{10}{15}=\tfrac{2}{3}</math> of the way from <math>C</math> to <math>A</math> and is located at <math>(8, 8)</math>. Thus line <math>BP</math> has equation <math>y=x</math>. Since <math>\overline{AD}\parallel\overline{BC}</math> and <math>\overline{BC}</math> is parallel to the ground, we know <math>D</math> has the same <math>y</math>-coordinate as <math>A</math>, except it'll also lie on the line <math>y=x</math>. Therefore, <math>D=(12, 12). \, \blacksquare</math> | ||
− | + | To find the location of point <math>E</math>, we need to find the intersection of <math>y=x</math> with a line parallel to <math>\overline{AB}</math> passing through <math>C</math>. The slope of this line is the same as the slope of <math>\overline{AB}</math>, or <math>\tfrac{12}{5}</math>, and has equation <math>y=\tfrac{12}{5}x-\tfrac{168}{5}</math>. The intersection of this line with <math>y=x</math> is <math>(24, 24)</math>. Therefore point <math>E</math> is located at <math>(24, 24). \, \blacksquare</math> | |
+ | |||
+ | The distance <math>DE</math> is equal to the distance between <math>(12, 12)</math> and <math>(24, 24)</math>, which is <math>\boxed{\textbf{(D)} ~12\sqrt{2}}</math> | ||
==Solution 2== | ==Solution 2== |
Revision as of 17:09, 16 February 2021
Contents
Problem
Triangle has
and
. Let
be the point on
such that
. There are exactly two points
and
on line
such that quadrilaterals
and
are trapezoids. What is the distance
Diagram
Solution 1 (analytic geometry)
Toss on the Cartesian plane with and
. Then
by the trapezoid condition, where
. Since
, point
is
of the way from
to
and is located at
. Thus line
has equation
. Since
and
is parallel to the ground, we know
has the same
-coordinate as
, except it'll also lie on the line
. Therefore,
To find the location of point , we need to find the intersection of
with a line parallel to
passing through
. The slope of this line is the same as the slope of
, or
, and has equation
. The intersection of this line with
is
. Therefore point
is located at
The distance is equal to the distance between
and
, which is
Solution 2
Using Stewart's Theorem we find . From the similar triangles
and
we have
So
Solution 3
Let be the length
. From the similar triangles
and
we have
Therefore
. Now extend line
to the point
on
, forming parallelogram
. As
we also have
so
.
We now use the Law of Cosines to find (the length of
):
As
, we have (by Law of Cosines on triangle
)
Therefore
And
. The answer is then
Video Solution by Punxsutawney Phil
https://YouTube.com/watch?v=yxt8-rUUosI&t=450s
Video Solution by OmegaLearn (Using properties of 13-14-15 triangle)
~ pi_is_3.14
Video Solution by Hawk Math
https://www.youtube.com/watch?v=p4iCAZRUESs
See Also
2021 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 10 |
Followed by Problem 12 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.