During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

Difference between revisions of "G285 2021 Summer Problem Set"

(Created page with "Welcome to the Birthday Problem Set! In this set, there are multiple choice AND free-response questions. Feel free to look at the solutions if you are stuck: ==Problem 1== Fi...")
 
m
Line 9: Line 9:
  
 
==Problem 2==
 
==Problem 2==
 +
Let circles <math>\omega_1</math> and <math>\omega_2</math> with centers <math>Q</math> and <math>L</math> concur at points <math>A</math> and <math>B</math> such that <math>AQ=20</math>, <math>AL=28</math>. Suppose a point <math>P</math> on the extension of <math>AB</math> is formed such that <math>PQ=29</math> and lines <math>PQ</math> and <math>PL</math> intersect <math>\omega_1</math> and <math>\omega_2</math> at <math>C</math> and <math>D</math> respectively. If <math>DC=\frac{16\sqrt{37}}{\sqrt{145}}</math>, the value of <math>\sin^2(\angle LAQ)</math> can be represented as <math>\frac{m \sqrt{n}}{r}</math>, where <math>m</math> and <math>r</math> are relatively prime positive integers, and <math>n</math> is square free. Find <math>2m+3n+4r</math>
 +
 +
<math>\textbf{(A)}\ 28 \qquad\textbf{(B)}\ 31 \qquad\textbf{(C)}\ 39 \qquad\textbf{(D)}\ 45 \qquad\textbf{(E)}\ 54</math>
 +
 +
==Problem 3==
 +
Let <math>ABCD</math> be a rectangle with <math>BC=6</math> and <math>AB=8</math>. Let points <math>M</math> and <math>N</math> lie on <math>ABCD</math> such that <math>M</math> is the midpoint of <math>BC</math> and <math>N</math> lies on <math>AD</math>. Let point <math>Q</math> be the center of the circumcircle of quadrilateral <math>MNOP</math> such that <math>O</math> and <math>P</math> lie on the circumcircle of <math>\triangle MNP</math> and <math>\triangle MNO</math> respectively, along with <math>OD \perp QO</math> and <math>MP \perp BP</math>. If the shortest distance between <math>Q</math> and <math>AB</math> is <math>3</math>, <math>\triangle AOQ</math> and <math>\triangle QBP</math> are degenerate, and <math>BP=AO</math>, find <math>25 \cdot OD \cdot PC</math>
 +
 +
<math>\textbf{(A)}\ 209 \qquad\textbf{(B)}\ 228 \qquad\textbf{(C)}\ 54\sqrt{57} \qquad\textbf{(D)}\ 90\sqrt{19} \qquad\textbf{(E)}\ 72\sqrt{57}</math>
 +
 +
==Problem 4==
 +
Suppose <math>\triangle ABC</math> is an equilateral triangle. Let points <math>D</math> and <math>E</math> lie on the extensions of <math>AB</math> and <math>AC</math> respectively such that <math>\angle AED=60^o</math> and <math>DE=14</math>. If there exists a point <math>P</math> outside of <math>\triangle ADE</math> such that <math>AP=PD=28</math>, and there exists a point <math>O</math> outside outside of <math>CBDE</math> such that <math>OE=OA</math>, the area <math>2APEO</math> can be represented as <math>m\sqrt{n}+o\sqrt{p}</math>, where <math>n</math> and <math>p</math> are squarefree,. Find <math>m+n+o+p</math>
 +
 +
<math>\textbf{(A)}\ 152 \qquad\textbf{(B)}\ 162 \qquad\textbf{(C)}\ 164 \qquad\textbf{(D)}\ 214\qquad\textbf{(E)}\ 224</math>
 +
 +
==Problem 5==
 +
<math>16</math> people are attending a hotel conference, <math>8</math> of which are executives, and <math>8</math> of which are speakers. Each person is designated a seat at one of <math>4</math> round tables, each containing <math>4</math> seats. If executives must sit at least one speaker and executive, there are <math>N</math> ways the people can be seated. Find <math>\left \lfloor \sqrt{N} \right \rfloor</math>. Assume seats, people, and table rotations are distinguishable.
 +
 +
<math>\textbf{(A)}\ 720 \qquad\textbf{(B)}\ 1440 \qquad\textbf{(C)}\ 2520 \qquad\textbf{(D)}\ 3456\qquad\textbf{(E)}\ 5760</math>
 +
 +
==Problem 6==

Revision as of 11:13, 24 June 2021

Welcome to the Birthday Problem Set! In this set, there are multiple choice AND free-response questions. Feel free to look at the solutions if you are stuck:

Problem 1

Find $\left \lceil {\frac{3!+4!+5!+6!}{2+3+4+5+6}} \right \rceil$

$\textbf{(A)}\ 42\qquad\textbf{(B)}\ 43\qquad\textbf{(C)}\ 44\qquad\textbf{(D)}\ 45\qquad\textbf{(E)}\ 46$

Solution

Problem 2

Let circles $\omega_1$ and $\omega_2$ with centers $Q$ and $L$ concur at points $A$ and $B$ such that $AQ=20$, $AL=28$. Suppose a point $P$ on the extension of $AB$ is formed such that $PQ=29$ and lines $PQ$ and $PL$ intersect $\omega_1$ and $\omega_2$ at $C$ and $D$ respectively. If $DC=\frac{16\sqrt{37}}{\sqrt{145}}$, the value of $\sin^2(\angle LAQ)$ can be represented as $\frac{m \sqrt{n}}{r}$, where $m$ and $r$ are relatively prime positive integers, and $n$ is square free. Find $2m+3n+4r$

$\textbf{(A)}\ 28 \qquad\textbf{(B)}\ 31 \qquad\textbf{(C)}\ 39 \qquad\textbf{(D)}\ 45 \qquad\textbf{(E)}\ 54$

Problem 3

Let $ABCD$ be a rectangle with $BC=6$ and $AB=8$. Let points $M$ and $N$ lie on $ABCD$ such that $M$ is the midpoint of $BC$ and $N$ lies on $AD$. Let point $Q$ be the center of the circumcircle of quadrilateral $MNOP$ such that $O$ and $P$ lie on the circumcircle of $\triangle MNP$ and $\triangle MNO$ respectively, along with $OD \perp QO$ and $MP \perp BP$. If the shortest distance between $Q$ and $AB$ is $3$, $\triangle AOQ$ and $\triangle QBP$ are degenerate, and $BP=AO$, find $25 \cdot OD \cdot PC$

$\textbf{(A)}\ 209 \qquad\textbf{(B)}\ 228 \qquad\textbf{(C)}\ 54\sqrt{57} \qquad\textbf{(D)}\ 90\sqrt{19} \qquad\textbf{(E)}\ 72\sqrt{57}$

Problem 4

Suppose $\triangle ABC$ is an equilateral triangle. Let points $D$ and $E$ lie on the extensions of $AB$ and $AC$ respectively such that $\angle AED=60^o$ and $DE=14$. If there exists a point $P$ outside of $\triangle ADE$ such that $AP=PD=28$, and there exists a point $O$ outside outside of $CBDE$ such that $OE=OA$, the area $2APEO$ can be represented as $m\sqrt{n}+o\sqrt{p}$, where $n$ and $p$ are squarefree,. Find $m+n+o+p$

$\textbf{(A)}\ 152 \qquad\textbf{(B)}\ 162 \qquad\textbf{(C)}\ 164 \qquad\textbf{(D)}\ 214\qquad\textbf{(E)}\ 224$

Problem 5

$16$ people are attending a hotel conference, $8$ of which are executives, and $8$ of which are speakers. Each person is designated a seat at one of $4$ round tables, each containing $4$ seats. If executives must sit at least one speaker and executive, there are $N$ ways the people can be seated. Find $\left \lfloor \sqrt{N} \right \rfloor$. Assume seats, people, and table rotations are distinguishable.

$\textbf{(A)}\ 720 \qquad\textbf{(B)}\ 1440 \qquad\textbf{(C)}\ 2520 \qquad\textbf{(D)}\ 3456\qquad\textbf{(E)}\ 5760$

Problem 6