Difference between revisions of "1996 USAMO Problems/Problem 5"
(Created page with "'''Problem:''' ---- Prove that the average of the numbers <math> n\sin n^{\circ}\; (n = 2,4,6,\ldots,180) </math> is <math>\cot 1^\circ</math>. '''Solution:''' ---- First, ...") |
(Tag: Undo) |
||
| (11 intermediate revisions by 8 users not shown) | |||
| Line 1: | Line 1: | ||
| − | + | ==Problem== | |
| − | + | Let <math>ABC</math> be a triangle, and <math>M</math> an interior point such that <math>\angle MAB=10^\circ </math>, <math>\angle MBA=20^\circ</math> , <math>\angle MAC= 40^\circ</math> and <math>\angle MCA=30^\circ</math>. Prove that the triangle is isosceles. | |
| − | + | ==Solution== | |
| + | ===Solution 1=== | ||
| + | Clearly, <math>\angle AMB = 150^\circ</math> and <math>\angle AMC = 110^\circ</math>. Now by the Law of Sines on triangles <math>ABM</math> and <math>ACM</math>, we have <cmath>\frac{AB}{\sin 150^\circ} = \frac{AM}{\sin 20^\circ}</cmath> and <cmath>\frac{AC}{\sin 110^\circ} = \frac{AM}{\sin 30^\circ}.</cmath> Combining these equations gives us <cmath>\frac{AB}{AC} = \frac{\sin 150^\circ \sin 30^\circ}{\sin 20^\circ \sin 110^\circ}.</cmath> Without loss of generality, let <math>AB = \sin 150^\circ \sin 30^\circ = \frac{1}{4}</math> and <math>AC = \sin 20^\circ \sin 110^\circ</math>. Then by the Law of Cosines, we have | ||
| + | <cmath> | ||
| + | \begin{align*} | ||
| + | BC^2 &= AB^2 + AC^2 - 2(AB)(BC)\cos\angle BAC\\ | ||
| + | &= \frac{1}{16} + \sin^2 20^\circ\sin^2 110^\circ - 2\left(\frac{1}{4}\right)\sin 20^\circ\sin 110^\circ\cos 50^\circ \\ | ||
| + | &= \frac{1}{16} + \sin^2 20^\circ \sin^2 110^\circ - \frac{1}{2}\sin 20^\circ\sin 110^\circ\sin 40^\circ \\ | ||
| + | &= \frac{1}{16} + \sin^2 20^\circ \sin^2 110^\circ - \sin 20^\circ\sin 110^\circ\sin 20^\circ\cos 20^\circ \\ | ||
| + | &= \frac{1}{16} | ||
| + | \end{align*} | ||
| + | </cmath> | ||
| + | Thus, <math>AB = BC</math>, our desired conclusion. | ||
| − | + | ===Solution 2=== | |
| − | ---- | + | |
| − | + | <center> | |
| − | + | <asy> | |
| − | + | ||
| − | < | + | pair A,B,C,M; |
| + | A=(0,0); | ||
| + | B=(1,2); | ||
| + | C=(2,0); | ||
| + | M=(0.8,1.1); | ||
| + | |||
| + | draw(A--B); | ||
| + | draw(B--C); | ||
| + | draw(C--A); | ||
| + | draw(A--M); | ||
| + | draw(B--M); | ||
| + | draw(C--M); | ||
| + | |||
| + | label("\(A\)",A,SW); | ||
| + | label("\(B\)",B,N); | ||
| + | label("\(C\)",C,SE); | ||
| + | label("\(M\)",M,NE); | ||
| + | |||
| + | </asy> | ||
| + | </center> | ||
| + | |||
| + | By the law of sines, <math>\frac{BM}{sin(10^\circ)}=\frac{AM}{sin(20^\circ)}</math> and <math>\frac{CM}{sin(40^\circ)}=\frac{AM}{sin(30^\circ)}</math>, so <math>\frac{BM}{CM}=\frac{sin(10^\circ)sin(30^\circ)}{sin(20^\circ)sin(40^\circ)}</math>. | ||
| + | |||
| + | Let <math>\angle MBC=x</math>. Then, <math>\angle MCB=80^\circ-x</math>. By the law of sines, <math>\frac{BM}{CM}=\frac{sin(80^\circ-x)}{sin(x)}</math>. | ||
| + | |||
| + | Combining, we have <math>\frac{sin(80^\circ-x)}{sin(x)}=\frac{sin(10^\circ)sin(30^\circ)}{sin(20^\circ)sin(40^\circ)}</math>. From here, we can use the given trigonometric identities at each step: | ||
| + | |||
| + | <cmath> | ||
| + | \begin{equations*}[t]{llr} | ||
| + | \frac{sin(80^\circ-x)}{sin(x)}&=\frac{sin(10^\circ)sin(30^\circ)}{sin(20^\circ)sin(40^\circ)}\\[10] | ||
| + | sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=sin(10^\circ)sin(30^\circ)sin(x)\\[10] | ||
| + | sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(30^\circ)=1/2]\\[10] | ||
| + | sin(80^\circ-x)sin(30^\circ-10^\circ)sin(30^\circ+10^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)\\[10] | ||
| + | sin(80^\circ-x)(cos^2(10^\circ)-cos^2(30^\circ))&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(A-B)sin(A+B)=cos^2 B-cos^2 A]\\[10] | ||
| + | sin(80^\circ-x)(cos^2(10^\circ)-\frac{3}{4})&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(30^\circ)=\frac{\sqrt{3}}{2}]\\[10] | ||
| + | sin(80^\circ-x) \frac{4cos^3(10^\circ)-3cos(10^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)\\[10] | ||
| + | sin(80^\circ-x) \frac{cos(30^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(3A)=4cos^3 A-3cos A]\\[10] | ||
| + | sin(80^\circ-x)cos(30^\circ)&=2sin(10^\circ)cos(10^\circ)sin(x)\\[10] | ||
| + | sin(80^\circ-x)cos(30^\circ)&=sin(20^\circ)sin(x)&[sin(2A)=2sin A cos A ]\\[10] | ||
| + | sin(80^\circ-x)sin(60^\circ)&=sin(20^\circ)sin(x)&[cos(30^\circ)=sin(60^\circ)]\\[10] | ||
| + | \frac{1}{2}(cos(20^\circ-x)-cos(140^\circ-x))&=\frac{1}{2}(cos(20^\circ-x)-cos(20^\circ+x))&[sin A sin B=\frac{1}{2}(cos(A-B)-cos(A+B))]\\[10] | ||
| + | cos(140^\circ-x)&=cos(20^\circ+x) | ||
| + | \end{equations*} | ||
| + | </cmath> | ||
| + | |||
| + | The only acute angle satisfying this equality is <math>x=60^\circ</math>. Therefore, <math>\angle ACB=80^\circ-x+30^\circ=50^\circ</math> and <math>\angle BAC=10^\circ+40^\circ=50^\circ</math>. Thus, <math>\triangle ABC</math> is isosceles. | ||
| + | |||
| + | ===Solution 3=== | ||
| + | If <math>\angle{MBC} = x</math> then by Angle Sum in a Triangle we have <math>\angle{MCB} = 80^\circ - x</math>. By Trig Ceva we have | ||
| + | <cmath>\sin 10^\circ \sin x \sin 30^\circ = \sin (80^\circ - x) \sin 40^\circ \sin 20^\circ.</cmath> | ||
| + | Because <math>\dfrac{\sin x}{\sin (80^\circ - x)}</math> is monotonic increasing over <math>(0, \dfrac{\pi}{2})</math>, there is only one solution <math>0 \le x \le \dfrac{\pi}{2}</math> to the equation. We claim it is <math>x = 60^\circ</math>, which will make <math>ABC</math> isosceles with <math>\angle{A} = \angle{C}</math>. | ||
| + | |||
| + | Notice that | ||
| + | <cmath>\sin 20^\circ \sin 20^\circ \sin 40^\circ = 2 \sin 10^\circ \cos 10^\circ \sin 20^\circ \sin 40^\circ</cmath> | ||
| + | <cmath>= \sin 10^\circ (\sin 10^\circ + \frac{1}{2}) \sin 40^\circ</cmath> | ||
| + | <cmath>= \sin 10^\circ (\frac{1}{2} \sin 40^\circ + \frac{1}{2} (\cos 30^\circ - \cos 50^\circ))</cmath> | ||
| + | <cmath>= \sin 10^\circ \frac{1}{2} \cos 30^\circ</cmath> | ||
| + | <cmath>= \sin 10^\circ \sin 30^\circ \sin 60^\circ,</cmath> | ||
| + | as desired. | ||
| + | |||
| + | == See Also == | ||
| + | {{USAMO newbox|year=1996|num-b=4|num-a=6}} | ||
| + | {{MAA Notice}} | ||
| + | [[Category:Olympiad Geometry Problems]] | ||
Latest revision as of 15:35, 28 June 2021
Problem
Let
be a triangle, and
an interior point such that
,
,
and
. Prove that the triangle is isosceles.
Solution
Solution 1
Clearly,
and
. Now by the Law of Sines on triangles
and
, we have
and
Combining these equations gives us
Without loss of generality, let
and
. Then by the Law of Cosines, we have
Thus,
, our desired conclusion.
Solution 2
By the law of sines,
and
, so
.
Let
. Then,
. By the law of sines,
.
Combining, we have
. From here, we can use the given trigonometric identities at each step:
\begin{equations*}[t]{llr}
\frac{sin(80^\circ-x)}{sin(x)}&=\frac{sin(10^\circ)sin(30^\circ)}{sin(20^\circ)sin(40^\circ)}\\[10]
sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=sin(10^\circ)sin(30^\circ)sin(x)\\[10]
sin(80^\circ-x)sin(20^\circ)sin(40^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(30^\circ)=1/2]\\[10]
sin(80^\circ-x)sin(30^\circ-10^\circ)sin(30^\circ+10^\circ)&=\frac{1}{2}sin(10^\circ)sin(x)\\[10]
sin(80^\circ-x)(cos^2(10^\circ)-cos^2(30^\circ))&=\frac{1}{2}sin(10^\circ)sin(x)&[sin(A-B)sin(A+B)=cos^2 B-cos^2 A]\\[10]
sin(80^\circ-x)(cos^2(10^\circ)-\frac{3}{4})&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(30^\circ)=\frac{\sqrt{3}}{2}]\\[10]
sin(80^\circ-x) \frac{4cos^3(10^\circ)-3cos(10^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)\\[10]
sin(80^\circ-x) \frac{cos(30^\circ)}{4cos(10^\circ)}&=\frac{1}{2}sin(10^\circ)sin(x)&[cos(3A)=4cos^3 A-3cos A]\\[10]
sin(80^\circ-x)cos(30^\circ)&=2sin(10^\circ)cos(10^\circ)sin(x)\\[10]
sin(80^\circ-x)cos(30^\circ)&=sin(20^\circ)sin(x)&[sin(2A)=2sin A cos A ]\\[10]
sin(80^\circ-x)sin(60^\circ)&=sin(20^\circ)sin(x)&[cos(30^\circ)=sin(60^\circ)]\\[10]
\frac{1}{2}(cos(20^\circ-x)-cos(140^\circ-x))&=\frac{1}{2}(cos(20^\circ-x)-cos(20^\circ+x))&[sin A sin B=\frac{1}{2}(cos(A-B)-cos(A+B))]\\[10]
cos(140^\circ-x)&=cos(20^\circ+x)
\end{equations*} (Error compiling LaTeX. Unknown error_msg)
The only acute angle satisfying this equality is
. Therefore,
and
. Thus,
is isosceles.
Solution 3
If
then by Angle Sum in a Triangle we have
. By Trig Ceva we have
Because
is monotonic increasing over
, there is only one solution
to the equation. We claim it is
, which will make
isosceles with
.
Notice that
as desired.
See Also
| 1996 USAMO (Problems • Resources) | ||
| Preceded by Problem 4 |
Followed by Problem 6 | |
| 1 • 2 • 3 • 4 • 5 • 6 | ||
| All USAMO Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.