During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

Difference between revisions of "G285 2021 Summer Problem Set"

(Created page with "Welcome to the Birthday Problem Set! In this set, there are multiple choice AND free-response questions. Feel free to look at the solutions if you are stuck: ==Problem 1== Fi...")
 
m (Problem 4)
 
(37 intermediate revisions by 2 users not shown)
Line 9: Line 9:
  
 
==Problem 2==
 
==Problem 2==
 +
Let <cmath>f(x,y) = \begin{cases}x^y & \text{ if } x^2>y \text{ and } |x|<y\\f(f(\sqrt{|x|},y),y) & \text{ otherwise}
 +
\end{cases}</cmath> If <math>y</math> is a positive integer, find the sum of all values of <math>x</math> such that <math>f(x,y) \neq k</math> for some constant <math>k</math>.
 +
 +
<math>\textbf{(A)}\ -1 \qquad\textbf{(B)}\ -\frac{1}{2} \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ \frac{3}{8} \qquad\textbf{(E)}\ 1</math>
 +
 +
[[G285 2021 Summer Problem Set Problem 2|Solution]]
 +
==Problem 3==
 +
<math>60</math> groups of molecules are gathered in a lab. The scientists in the lab randomly assign the <math>60</math> molecules into <math>5</math> groups of <math>12</math>. Within these groups, there will be <math>5</math> distinguishable labels (Strong acid, weak acid, strong base, weak base, nonelectrolyte), and each molecule will randomly be assigned a label such that teams can be empty, and each label is unique in the group. Find the number of ways that the molecules can be arranged by the scientists.
 +
 +
<math>\textbf{(A)}\ 5^{60} \qquad\textbf{(B)}\ \frac{60!\cdot 5^{60}}{(12!)^4} \qquad\textbf{(C)}\ \frac{60!\cdot 5^{30}}{(12!)^4} \qquad\textbf{(D)}\ \frac{40!\cdot 5^{60}}{11!(12!)^3} \qquad\textbf{(E)}\ 60!5^{60}</math>
 +
 +
[[G285 2021 Summer Problem Set Problem 3|Solution]]
 +
 +
==Problem 4==
 +
<math>16</math> people are attending a hotel conference, <math>8</math> of which are executives, and <math>8</math> of which are speakers. Each person is designated a seat at one of <math>4</math> round tables, each containing <math>4</math> seats. If executives must sit at least one speaker and executive, there are <math>N</math> ways the people can be seated. Find <math>\left \lfloor \sqrt{N} \right \rfloor</math>. Assume seats, people, and table rotations are distinguishable.
 +
 +
<math>\textbf{(A)}\ 720 \qquad\textbf{(B)}\ 1440 \qquad\textbf{(C)}\ 2520 \qquad\textbf{(D)}\ 5760\qquad\textbf{(E)}\ 6172</math>
 +
 +
[[G285 2021 Summer Problem Set Problem 4|Solution]]
 +
 +
==Problem 5==
 +
Suppose <math>\triangle ABC</math> is an equilateral triangle. Let points <math>D</math> and <math>E</math> lie on the extensions of <math>AB</math> and <math>AC</math> respectively such that <math>\angle AED=60^o</math> and <math>DE=14</math>. If there exists a point <math>P</math> outside of <math>\triangle ADE</math> such that <math>AP=PD=28</math>, and there exists a point <math>O</math> outside outside of <math>CBDE</math> such that <math>OE=OA</math>, the area <math>2APEO</math> can be represented as <math>m\sqrt{n}+o\sqrt{p}</math>, where <math>n</math> and <math>p</math> are squarefree,. Find <math>m+n+o+p</math>
 +
 +
<math>\textbf{(A)}\ 152 \qquad\textbf{(B)}\ 162 \qquad\textbf{(C)}\ 164 \qquad\textbf{(D)}\ 214\qquad\textbf{(E)}\ 224</math>
 +
 +
[[G285 2021 Summer Problem Set Problem 5|Solution]]
 +
 +
==Problem 6==
 +
Let <math>ABCD</math> be a rectangle with <math>BC=6</math> and <math>AB=8</math>. Let points <math>M</math> and <math>N</math> lie on <math>ABCD</math> such that <math>M</math> is the midpoint of <math>BC</math> and <math>N</math> lies on <math>AD</math>. Let point <math>Q</math> be the center of the circumcircle of quadrilateral <math>MNOP</math> such that <math>O</math> and <math>P</math> lie on the circumcircle of <math>\triangle MNP</math> and <math>\triangle MNO</math> respectively, along with <math>OD \perp QO</math> and <math>MP \perp BP</math>. If the shortest distance between <math>Q</math> and <math>AB</math> is <math>3</math>, <math>\triangle AOQ</math> and <math>\triangle QBP</math> are degenerate, and <math>BP=AO</math>, find <math>25 \cdot OD \cdot PC</math>
 +
 +
<math>\textbf{(A)}\ 209 \qquad\textbf{(B)}\ 228 \qquad\textbf{(C)}\ 54\sqrt{57} \qquad\textbf{(D)}\ 90\sqrt{19} \qquad\textbf{(E)}\ 72\sqrt{57}</math>
 +
 +
[[G285 2021 Summer Problem Set Problem 6|Solution]]
 +
 +
==Problem 7==
 +
Geometry285 is playing the game "Guess And Choose". In this game, Geometry285 selects a subset of not necessarily distinct integers <math>P=\{a,b,c \cdots \}</math> from the set <math>S=\{1,2,3,4 \cdots k-1,k \}</math> such that the sum of all elements in <math>P</math> is <math>k</math>. Each distinct is selected chronologically and placed in <math>P</math>, such that <math>1 \le a \le k</math>, <math>1 \le b \le a</math>, <math>1 \le c \le b</math>, and so on. Then, the elements are randomly arranged. Suppose <math>S_{p,k}</math> represents the total number of outcomes that a subset <math>P</math> containing <math>p</math> integers sums to <math>k</math>. If distinct permutations of the same set <math>P</math> are considered unique, find the remainder when <cmath>\sum_{p=1}^{1000}\sum_{k=1}^{1000} S_{p,k}</cmath> is divided by <math>100</math>.
 +
 +
<math>\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 50 \qquad\textbf{(D)}\ 51 \qquad\textbf{(E)}\ 124</math>
 +
 +
[[G285 2021 Summer Problem Set Problem 7|Solution]]
 +
 +
==Problem 8==
 +
Let <math>p(x)=x^{12}-9x^{11}+16x^{10}+256x^5+1</math>, Let <math>r_1, r_2, r_3, r_4, r_5, r_6, ..., r_{12}</math> be the twelve roots that satisfies <math>p(x)=0</math>, find the least possible value of <cmath>\left \lfloor \sum_{n=1}^{12}\sum_{k=1}^{12} r_nr_k-\sum_{s=1}^{11} r_s \right \rfloor</cmath>
 +
 +
<math>\textbf{(A)}\ 67 \qquad\textbf{(B)}\ 69 \qquad\textbf{(C)}\ 70 \qquad\textbf{(D)}\ 71 \qquad\textbf{(E)}\ 72</math>
 +
 +
[[G285 Summer Problem Set Problem 8|Solution]]
 +
 +
==Problem 9==
 +
Let circles <math>\omega_1</math> and <math>\omega_2</math> with centers <math>Q</math> and <math>L</math> concur at points <math>A</math> and <math>B</math> such that <math>AQ=20</math>, <math>AL=28</math>. Suppose a point <math>P</math> on the extension of <math>AB</math> is formed such that <math>PQ=29</math> and lines <math>PQ</math> and <math>PL</math> intersect <math>\omega_1</math> and <math>\omega_2</math> at <math>C</math> and <math>D</math> respectively. If <math>DC=\frac{16\sqrt{37}}{\sqrt{145}}</math>, the value of <math>\sin^2(\angle LAQ)</math> can be represented as <math>\frac{m \sqrt{n}}{r}</math>, where <math>m</math> and <math>r</math> are relatively prime positive integers, and <math>n</math> is square free. Find <math>2m+3n+4r</math>
 +
 +
<math>\textbf{(A)}\ 28 \qquad\textbf{(B)}\ 31 \qquad\textbf{(C)}\ 39 \qquad\textbf{(D)}\ 45 \qquad\textbf{(E)}\ 54</math>
 +
 +
[[G285 2021 Summer Problem Set Problem 9|Solution]]
 +
 +
==Problem 10==
 +
Let <math>k \in \mathbb{N}</math> for <math>k>1</math>. Suppose <math>\lfloor \omega_k \rfloor</math> makes <math>k=(p_1p_2p_3 \cdots p_e)^1</math> for distinct prime factors <math>p</math>. If <math>\tau(p)</math> for <math>p>1</math> is <cmath>\sum_{j=1}^{e} p_j</cmath> where <math>p_j</math> must satisfy that <math>\frac{\lfloor \omega_k \rfloor}{p_j}</math> is an integer, and <math>p_j</math> is divisible by the <math>p</math>th and <math>(p-1)</math>th triangular number. Find <math>\tau(3)+\tau(4)+\tau(5)+ \cdots +\tau(99)+\tau(100)</math>
 +
 +
<math>\textbf{(A)}\ 1024 \qquad\textbf{(B)}\ 1331 \qquad\textbf{(C)}\ 1539 \qquad\textbf{(D)}\ 2000 \qquad\textbf{(E)}\ 2719</math>
 +
 +
[[G285 2021 Summer Problem Set Problem 10|Solution]]
 +
 +
==Problem 11==
 +
Let a recursive sequence <math>a_n</math> be defined such that <math>a_1=20</math>, and <math>a_n=16a_{n-1}+4</math>. Find the last <math>3</math> digits of <math>a_{100}</math>
 +
 +
[[G285 2021 MC-IME I Problem 1|Solution]]
 +
 +
==Problem 12==
 +
Suppose the function <cmath>P(a,b,c)=a^2b^4+b^2c^4+c^2a^4+8c+8b+8a+8a^3+8b^3+8c^3-3\sqrt[3]{abc}-21</cmath>. If <math>P(a)+P(b)+P(c)=P(a,b,c)=P(k)</math>, and the polynomial <math>P(k)</math> contains the points <math>(P(k),P(k)+1)</math>,<math>(P(k)+3,P(k)+5)</math>, and <math>(P(k)+8,11)</math>, find the smallest value of <math>P(23)</math> for which <math>P(P(P(a,b,c))=abc(P(a)+P(b)+P(c))</math>
 +
 +
[[G285 2021 Summer Problem Set Problem 12|Solution]]
 +
 +
==Problem 13==
 +
Let circles <math>O_1</math>,<math>O_2</math>, and <math>O_3</math> concur at <math>E</math>, where <math>EP</math> is the common chord shared by <math>\{O_1,O_3 \}</math>, <math>QE</math> is the common chord shared by <math>\{O_1,O_2 \}</math>, and <math>E</math> lies on the common internal tangent of <math>\{O_2,O_3 \}</math>. Let the extension of <math>PE</math> and <math>QE</math> intersect <math>O_2</math> and <math>O_3</math> again at <math>F</math> and <math>G</math> respectively. If <math>\overline{CF} \cap \overline{BG} \in D</math>, prove <math>ABDC</math> is a parallelogram.
 +
 +
[[G285 2021 Summer Problem Set Problem 13|Solution]]
 +
 +
==Problem 14==
 +
Bobby the frog is hopping around the unit circle. Suppose Bobby starts at <math>(1,0)</math>. After every <math>n</math>th minute, Bobby moves to <math>(a,bi)</math> such that <math>a^2+b^2 \le 1</math>, and <math>(a,bi)</math> is an <math>n</math>th root of unity for <math>n>1</math>. Suppose Bobby is unidirectional for every <math>3</math> minutes, and randomly chooses to reverse his direction after each cycle. In how many ways can Bobby travel around the unit circle exactly <math>6</math> times?
 +
 +
[[G285 2021 Summer Problem Set Problem 14|Solution]]
 +
 +
==Problem 15==
 +
Find the average of all values <math>z</math> such that <cmath>\sum_{n=1}^{119} \prod_{j=1}^{7} (z^j)^{n} = \left(\sum_{p=1}^{60} z^{2p-1}-\sum_{n=1}^{59} z^{2n} \right)^{5040}+2</cmath>
 +
 +
[[G285 2021 Summer Problem Set Problem 15|Solution]]

Latest revision as of 22:28, 28 June 2021

Welcome to the Birthday Problem Set! In this set, there are multiple choice AND free-response questions. Feel free to look at the solutions if you are stuck:

Problem 1

Find $\left \lceil {\frac{3!+4!+5!+6!}{2+3+4+5+6}} \right \rceil$

$\textbf{(A)}\ 42\qquad\textbf{(B)}\ 43\qquad\textbf{(C)}\ 44\qquad\textbf{(D)}\ 45\qquad\textbf{(E)}\ 46$

Solution

Problem 2

Let \[f(x,y) = \begin{cases}x^y & \text{ if } x^2>y \text{ and } |x|<y\\f(f(\sqrt{|x|},y),y) & \text{ otherwise} \end{cases}\] If $y$ is a positive integer, find the sum of all values of $x$ such that $f(x,y) \neq k$ for some constant $k$.

$\textbf{(A)}\ -1 \qquad\textbf{(B)}\ -\frac{1}{2} \qquad\textbf{(C)}\ 0 \qquad\textbf{(D)}\ \frac{3}{8} \qquad\textbf{(E)}\ 1$

Solution

Problem 3

$60$ groups of molecules are gathered in a lab. The scientists in the lab randomly assign the $60$ molecules into $5$ groups of $12$. Within these groups, there will be $5$ distinguishable labels (Strong acid, weak acid, strong base, weak base, nonelectrolyte), and each molecule will randomly be assigned a label such that teams can be empty, and each label is unique in the group. Find the number of ways that the molecules can be arranged by the scientists.

$\textbf{(A)}\ 5^{60} \qquad\textbf{(B)}\ \frac{60!\cdot 5^{60}}{(12!)^4} \qquad\textbf{(C)}\ \frac{60!\cdot 5^{30}}{(12!)^4} \qquad\textbf{(D)}\ \frac{40!\cdot 5^{60}}{11!(12!)^3} \qquad\textbf{(E)}\ 60!5^{60}$

Solution

Problem 4

$16$ people are attending a hotel conference, $8$ of which are executives, and $8$ of which are speakers. Each person is designated a seat at one of $4$ round tables, each containing $4$ seats. If executives must sit at least one speaker and executive, there are $N$ ways the people can be seated. Find $\left \lfloor \sqrt{N} \right \rfloor$. Assume seats, people, and table rotations are distinguishable.

$\textbf{(A)}\ 720 \qquad\textbf{(B)}\ 1440 \qquad\textbf{(C)}\ 2520 \qquad\textbf{(D)}\ 5760\qquad\textbf{(E)}\ 6172$

Solution

Problem 5

Suppose $\triangle ABC$ is an equilateral triangle. Let points $D$ and $E$ lie on the extensions of $AB$ and $AC$ respectively such that $\angle AED=60^o$ and $DE=14$. If there exists a point $P$ outside of $\triangle ADE$ such that $AP=PD=28$, and there exists a point $O$ outside outside of $CBDE$ such that $OE=OA$, the area $2APEO$ can be represented as $m\sqrt{n}+o\sqrt{p}$, where $n$ and $p$ are squarefree,. Find $m+n+o+p$

$\textbf{(A)}\ 152 \qquad\textbf{(B)}\ 162 \qquad\textbf{(C)}\ 164 \qquad\textbf{(D)}\ 214\qquad\textbf{(E)}\ 224$

Solution

Problem 6

Let $ABCD$ be a rectangle with $BC=6$ and $AB=8$. Let points $M$ and $N$ lie on $ABCD$ such that $M$ is the midpoint of $BC$ and $N$ lies on $AD$. Let point $Q$ be the center of the circumcircle of quadrilateral $MNOP$ such that $O$ and $P$ lie on the circumcircle of $\triangle MNP$ and $\triangle MNO$ respectively, along with $OD \perp QO$ and $MP \perp BP$. If the shortest distance between $Q$ and $AB$ is $3$, $\triangle AOQ$ and $\triangle QBP$ are degenerate, and $BP=AO$, find $25 \cdot OD \cdot PC$

$\textbf{(A)}\ 209 \qquad\textbf{(B)}\ 228 \qquad\textbf{(C)}\ 54\sqrt{57} \qquad\textbf{(D)}\ 90\sqrt{19} \qquad\textbf{(E)}\ 72\sqrt{57}$

Solution

Problem 7

Geometry285 is playing the game "Guess And Choose". In this game, Geometry285 selects a subset of not necessarily distinct integers $P=\{a,b,c \cdots \}$ from the set $S=\{1,2,3,4 \cdots k-1,k \}$ such that the sum of all elements in $P$ is $k$. Each distinct is selected chronologically and placed in $P$, such that $1 \le a \le k$, $1 \le b \le a$, $1 \le c \le b$, and so on. Then, the elements are randomly arranged. Suppose $S_{p,k}$ represents the total number of outcomes that a subset $P$ containing $p$ integers sums to $k$. If distinct permutations of the same set $P$ are considered unique, find the remainder when \[\sum_{p=1}^{1000}\sum_{k=1}^{1000} S_{p,k}\] is divided by $100$.

$\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 1 \qquad\textbf{(C)}\ 50 \qquad\textbf{(D)}\ 51 \qquad\textbf{(E)}\ 124$

Solution

Problem 8

Let $p(x)=x^{12}-9x^{11}+16x^{10}+256x^5+1$, Let $r_1, r_2, r_3, r_4, r_5, r_6, ..., r_{12}$ be the twelve roots that satisfies $p(x)=0$, find the least possible value of \[\left \lfloor \sum_{n=1}^{12}\sum_{k=1}^{12} r_nr_k-\sum_{s=1}^{11} r_s \right \rfloor\]

$\textbf{(A)}\ 67 \qquad\textbf{(B)}\ 69 \qquad\textbf{(C)}\ 70 \qquad\textbf{(D)}\ 71 \qquad\textbf{(E)}\ 72$

Solution

Problem 9

Let circles $\omega_1$ and $\omega_2$ with centers $Q$ and $L$ concur at points $A$ and $B$ such that $AQ=20$, $AL=28$. Suppose a point $P$ on the extension of $AB$ is formed such that $PQ=29$ and lines $PQ$ and $PL$ intersect $\omega_1$ and $\omega_2$ at $C$ and $D$ respectively. If $DC=\frac{16\sqrt{37}}{\sqrt{145}}$, the value of $\sin^2(\angle LAQ)$ can be represented as $\frac{m \sqrt{n}}{r}$, where $m$ and $r$ are relatively prime positive integers, and $n$ is square free. Find $2m+3n+4r$

$\textbf{(A)}\ 28 \qquad\textbf{(B)}\ 31 \qquad\textbf{(C)}\ 39 \qquad\textbf{(D)}\ 45 \qquad\textbf{(E)}\ 54$

Solution

Problem 10

Let $k \in \mathbb{N}$ for $k>1$. Suppose $\lfloor \omega_k \rfloor$ makes $k=(p_1p_2p_3 \cdots p_e)^1$ for distinct prime factors $p$. If $\tau(p)$ for $p>1$ is \[\sum_{j=1}^{e} p_j\] where $p_j$ must satisfy that $\frac{\lfloor \omega_k \rfloor}{p_j}$ is an integer, and $p_j$ is divisible by the $p$th and $(p-1)$th triangular number. Find $\tau(3)+\tau(4)+\tau(5)+ \cdots +\tau(99)+\tau(100)$

$\textbf{(A)}\ 1024 \qquad\textbf{(B)}\ 1331 \qquad\textbf{(C)}\ 1539 \qquad\textbf{(D)}\ 2000 \qquad\textbf{(E)}\ 2719$

Solution

Problem 11

Let a recursive sequence $a_n$ be defined such that $a_1=20$, and $a_n=16a_{n-1}+4$. Find the last $3$ digits of $a_{100}$

Solution

Problem 12

Suppose the function \[P(a,b,c)=a^2b^4+b^2c^4+c^2a^4+8c+8b+8a+8a^3+8b^3+8c^3-3\sqrt[3]{abc}-21\]. If $P(a)+P(b)+P(c)=P(a,b,c)=P(k)$, and the polynomial $P(k)$ contains the points $(P(k),P(k)+1)$,$(P(k)+3,P(k)+5)$, and $(P(k)+8,11)$, find the smallest value of $P(23)$ for which $P(P(P(a,b,c))=abc(P(a)+P(b)+P(c))$

Solution

Problem 13

Let circles $O_1$,$O_2$, and $O_3$ concur at $E$, where $EP$ is the common chord shared by $\{O_1,O_3 \}$, $QE$ is the common chord shared by $\{O_1,O_2 \}$, and $E$ lies on the common internal tangent of $\{O_2,O_3 \}$. Let the extension of $PE$ and $QE$ intersect $O_2$ and $O_3$ again at $F$ and $G$ respectively. If $\overline{CF} \cap \overline{BG} \in D$, prove $ABDC$ is a parallelogram.

Solution

Problem 14

Bobby the frog is hopping around the unit circle. Suppose Bobby starts at $(1,0)$. After every $n$th minute, Bobby moves to $(a,bi)$ such that $a^2+b^2 \le 1$, and $(a,bi)$ is an $n$th root of unity for $n>1$. Suppose Bobby is unidirectional for every $3$ minutes, and randomly chooses to reverse his direction after each cycle. In how many ways can Bobby travel around the unit circle exactly $6$ times?

Solution

Problem 15

Find the average of all values $z$ such that \[\sum_{n=1}^{119} \prod_{j=1}^{7} (z^j)^{n} = \left(\sum_{p=1}^{60} z^{2p-1}-\sum_{n=1}^{59} z^{2n} \right)^{5040}+2\]

Solution