Difference between revisions of "2021 Fall AMC 12A Problems/Problem 9"
m |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
<math>\textbf{(A)}\ 2\sqrt{6} \qquad\textbf{(B)}\ 6\sqrt{6} \qquad\textbf{(C)}\ 24 \qquad\textbf{(D)}\ 48 \qquad\textbf{(E)}\ 576</math> | <math>\textbf{(A)}\ 2\sqrt{6} \qquad\textbf{(B)}\ 6\sqrt{6} \qquad\textbf{(C)}\ 24 \qquad\textbf{(D)}\ 48 \qquad\textbf{(E)}\ 576</math> | ||
− | ==Solution | + | ==Solution== |
The surface area of this right rectangular prism is <math>2(\log_{2}x\log_{3}x+\log_{2}x\log_{4}x+\log_{3}x\log_{4}x).</math> | The surface area of this right rectangular prism is <math>2(\log_{2}x\log_{3}x+\log_{2}x\log_{4}x+\log_{3}x\log_{4}x).</math> | ||
Line 21: | Line 21: | ||
~MRENTHUSIASM | ~MRENTHUSIASM | ||
− | == Solution | + | ==Video Solution by TheBeautyofMath== |
− | + | https://youtu.be/wlDlByKI7A8?t=649 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ~IceMatrix | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2021 Fall|ab=A|num-b=8|num-a=10}} | {{AMC12 box|year=2021 Fall|ab=A|num-b=8|num-a=10}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 21:58, 7 April 2022
Problem
A right rectangular prism whose surface area and volume are numerically equal has edge lengths and
What is
Solution
The surface area of this right rectangular prism is
The volume of this right rectangular prism is
Equating the numerical values of the surface area and the volume, we have
Dividing both sides by
we get
Recall that
and
so we rewrite
as
~MRENTHUSIASM
Video Solution by TheBeautyofMath
https://youtu.be/wlDlByKI7A8?t=649
~IceMatrix
See Also
2021 Fall AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.