Difference between revisions of "User:Temperal/The Problem Solver's Resource1"

(Basic Facts)
(Other Formulas)
Line 61: Line 61:
 
and
 
and
  
<math>\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}</math>
+
<math>\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R</math>
  
 
The [[area]] of a triangle can be found by  
 
The [[area]] of a triangle can be found by  

Revision as of 09:39, 6 October 2007



The Problem Solver's Resource
Introduction Other Tips and Tricks Methods of Proof You are currently viewing page 1.

Trigonometric Formulas

Note that all measurements are in degrees, not radians.

Basic Facts

$\sin (-A)=-\sin A$

$\cos (-A)=\cos A$

$\tan (-A)=-\tan A$

$\sin (180-A) = \sin A$

$\cos (180-A) = -\cos A$

$\cos (360-A) = \cos A$

$\tan (180+A) = \tan A$

$\cos (90-A)=\sin A$

$\tan (90-A)=\cot A$

Sum of Angle Formulas

$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$

$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$

$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

$\sin2A=2\sin A \cos A$

$\cos2A=\cos^2 A - \sin^2 A$ or $\cos2A=2\cos^2 A -1$ or $\cos2A=1- 2 \sin^2 A$

$\tan2A=\frac{2\tan A}{1-\tan^2 A}$

Pythagorean identities

$\sin^2 A+\cos^2 A=1$

$1 + \tan^2 A = \sec^2 A$

$1 + \cot^2 A = \csc^2 A$

for all $A$.

Other Formulas

In a triangle with sides $a$, $b$, and $c$ opposite angles $A$, $B$, and $C$, respectively,

$c^2=a^2+b^2-2bc\cos A$

and

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$

The area of a triangle can be found by

$\frac 12ab\sin C$

Back to intro | Continue to page 2