Difference between revisions of "1963 IMO Problems/Problem 5"
(→Solution 3) |
|||
| Line 2: | Line 2: | ||
Prove that <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}</math>. | Prove that <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=\frac{1}{2}</math>. | ||
| − | + | == Solution 1 == | |
| − | |||
Let <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=S</math>. We have | Let <math>\cos{\frac{\pi}{7}}-\cos{\frac{2\pi}{7}}+\cos{\frac{3\pi}{7}}=S</math>. We have | ||
| Line 14: | Line 13: | ||
Thus <math>S = 1/2</math>. <math>\blacksquare</math> | Thus <math>S = 1/2</math>. <math>\blacksquare</math> | ||
| − | + | == Solution 2 == | |
Let <math>a=\sin{\frac{\pi}{7}}</math> and <math>b=\cos{\frac{\pi}{7}}</math>. From the addition formulae, we have | Let <math>a=\sin{\frac{\pi}{7}}</math> and <math>b=\cos{\frac{\pi}{7}}</math>. From the addition formulae, we have | ||
| Line 37: | Line 36: | ||
Clearly <math>b\neq -1</math>, so <math>8b^3-4b^2-4b+1=0</math>. This proves the result. <math>\blacksquare</math> | Clearly <math>b\neq -1</math>, so <math>8b^3-4b^2-4b+1=0</math>. This proves the result. <math>\blacksquare</math> | ||
| − | + | == Solution 3 == | |
Let <math>\omega=\mathrm{cis}\left(\frac{\pi}{14}\right)</math>. Thus it suffices to show that <math>\omega+\omega^{-1}-\omega^2-\omega^{-2}+\omega^3+\omega^{-3}=1</math>. Now using the fact that <math>\omega^k=\omega^{14+k}</math> and <math>-\omega^2=\omega^9</math>, this is equivalent to | Let <math>\omega=\mathrm{cis}\left(\frac{\pi}{14}\right)</math>. Thus it suffices to show that <math>\omega+\omega^{-1}-\omega^2-\omega^{-2}+\omega^3+\omega^{-3}=1</math>. Now using the fact that <math>\omega^k=\omega^{14+k}</math> and <math>-\omega^2=\omega^9</math>, this is equivalent to | ||
<cmath>\omega+\omega^3+\omega^5+\omega^7+\omega^9+\omega^{11}+\omega^{13}-\omega^7</cmath> | <cmath>\omega+\omega^3+\omega^5+\omega^7+\omega^9+\omega^{11}+\omega^{13}-\omega^7</cmath> | ||
Revision as of 04:11, 21 July 2022
Problem
Prove that
.
Solution 1
Let
. We have
Then, by product-sum formulae, we have
Thus
.
Solution 2
Let
and
. From the addition formulae, we have
From the Trigonometric Identity,
, so
We must prove that
. It suffices to show that
.
Now note that
. We can find these in terms of
and
:
Therefore
. Note that this can be factored:
Clearly
, so
. This proves the result.
Solution 3
Let
. Thus it suffices to show that
. Now using the fact that
and
, this is equivalent to
But since
is a
th root of unity,
. The answer is then
, as desired.
~yofro
See Also
| 1963 IMO (Problems) • Resources | ||
| Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
| All IMO Problems and Solutions | ||