Difference between revisions of "User:Temperal/The Problem Solver's Resource1"

(==Law of Cosines: header)
(=Law of Tangents: header)
Line 101: Line 101:
 
<math>\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R</math>
 
<math>\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R</math>
  
====Law of Tangents===
+
====Law of Tangents====
  
 
For any <math>a</math> and <math>b</math> such that <math>\tan a,\tan b \subset \mathbb{R}</math>,
 
For any <math>a</math> and <math>b</math> such that <math>\tan a,\tan b \subset \mathbb{R}</math>,

Revision as of 17:22, 9 October 2007



The Problem Solver's Resource
Introduction Other Tips and Tricks Methods of Proof You are currently viewing page 1.

Trigonometric Formulas

Note that all measurements are in degrees, not radians.

Basic Facts

$\sin (-A)=-\sin A$

$\cos (-A)=\cos A$

$\tan (-A)=-\tan A$

$\sin (180-A) = \sin A$

$\cos (180-A) = -\cos A$

$\cos (360-A) = \cos A$

$\tan (180+A) = \tan A$

$\cos (90-A)=\sin A$

$\tan (90-A)=\cot A$

$\sec{90-A}=\csc A$

$\cos (90-A) = \sin A$

$\cot (90-A)=\tan A$

$\csc (90-A)=\sec A$

$\sin^2 A+\cos^2 A=1$

$\sec^2 A-\tan^2 A=1$

$\csc^2 A-\cot^2 A=1$

$\tan A=\frac{\sin A}{\cos A}$

$\sin^2 \frac{A}{2}=\frac{1}{2}(1-\cos A)$

$\cos^2 \frac{A}{2}=\frac{1}{2}(1+\cos A)$

$\tan \frac{A}{2}=\frac{1-\cos A}{\sin A}=\frac{\sin A}{1+\cos A}$

Terminology

$\cot A=\frac{1}{\tan A}$, but $\cot A\ne\tan^{-1} A}$ (Error compiling LaTeX. Unknown error_msg).

$\csc A=\frac{1}{\sin A}$, but $\csc A\ne\sin^{-1} A}$ (Error compiling LaTeX. Unknown error_msg).

$\sec A=\frac{1}{\sin A}$, but $\sec A\ne\cos^{-1} A}$ (Error compiling LaTeX. Unknown error_msg).

Also:

$\tan^{-1} A=\text{atan } A=\arctan A$

$\cos^{-1} A=\text{acos } A=\arccos A$

$\sin^{-1} A=\text{asin } A=\arcsin A$

Sum of Angle Formulas

$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$

$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$

$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

$\sin2A=2\sin A \cos A$

$\cos2A=\cos^2 A - \sin^2 A$ or $\cos2A=2\cos^2 A -1$ or $\cos2A=1- 2 \sin^2 A$

$\tan2A=\frac{2\tan A}{1-\tan^2 A}$

Pythagorean identities

$\sin^2 A+\cos^2 A=1$

$1 + \tan^2 A = \sec^2 A$

$1 + \cot^2 A = \csc^2 A$

for all $A$.

Other Formulas

Law of Cosines

In a triangle with sides $a$, $b$, and $c$ opposite angles $A$, $B$, and $C$, respectively,

$c^2=a^2+b^2-2bc\cos A$

and:

Law of Sines

$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$

Law of Tangents

For any $a$ and $b$ such that $\tan a,\tan b \subset \mathbb{R}$, $\frac{a-b}{a+b}=\frac{\tan(a-b)}{\tan(a+b)}$

Area of a Triangle

The area of a triangle can be found by

$\frac 12ab\sin C$

Back to intro | Continue to page 2