Difference between revisions of "Spiral similarity"
(→Basic information) |
(→Hidden spiral symilarity) |
||
| Line 32: | Line 32: | ||
<math>\angle Ax_0B = \arg(k)</math> is the angle of rotation. | <math>\angle Ax_0B = \arg(k)</math> is the angle of rotation. | ||
| − | ==Hidden spiral symilarity== | + | ==Simple problems== |
| + | ===Hidden spiral symilarity=== | ||
[[File:1932a Pras.png|400px|right]] | [[File:1932a Pras.png|400px|right]] | ||
[[File:1932b Pras.png|400px|right]] | [[File:1932b Pras.png|400px|right]] | ||
Revision as of 13:18, 11 June 2023
Basic information
A spiral similarity is a plane transformation composed of a rotation of the plane and a dilation of the plane having the common center. The order in which the composition is taken is not important.
The transformation is linear and transforms any given object into an object homothetic to given.
On the complex plane, any spiral similarity can be expressed in the form
where
is a complex number. The magnitude
is the dilation factor of the spiral similarity, and the argument
is the angle of rotation.
The spiral similarity is uniquely defined by the images of two distinct points. It is easy to show using the complex plane.
Let
with corresponding complex numbers
and
so
Case 1 Any line segment
can be mapped into any other
using the spiral similarity. Notation is shown on the diagram.
is circle
is circle
is any point of
is circle
is the image
under spiral symilarity centered at
is the dilation factor,
is the angle of rotation.
Case 2 Any line segment
can be mapped into any other
using the spiral similarity. Notation is shown on the diagram.
is circle
(so circle is tangent to
is circle tangent to
is any point of
is circle
is the image
under spiral symilarity centered at
is the dilation factor,
is the angle of rotation.
Simple problems
Hidden spiral symilarity
Let
be an isosceles right triangle
Let
be a point on a circle with diameter
The line
is symmetrical to
with respect to
and intersects
at
Prove that
Proof
Denote
Let
cross perpendicular to
in point
at point
Then
Points
and
are simmetric with respect
so
The spiral symilarity centered at
with coefficient
and the angle of rotation
maps
to
and
to point
such that
Therefore
vladimir.shelomovskii@gmail.com, vvsss