Difference between revisions of "1967 AHSME Problems/Problem 14"
m (→Solution) |
m (→See also) |
||
Line 38: | Line 38: | ||
== See also == | == See also == | ||
− | {{AHSME box|year=1967|num-b=13|num-a=15}} | + | {{AHSME 40p box|year=1967|num-b=13|num-a=15}} |
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 01:39, 16 August 2023
Problem
Let ,
. If
, then
can be expressed as
Solution
Since we know that , we can solve for
in terms of
. This gives us
Therefore, we want to find the function with that outputs
Listing out the possible outputs from each of the given functions we get
Since the answer must be
.
See also
1967 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.