Difference between revisions of "Proportion/Introductory"
(noinclude) |
(category) |
||
| (One intermediate revision by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | |||
==Problem== | ==Problem== | ||
</noinclude> | </noinclude> | ||
| Line 8: | Line 7: | ||
\end{cases} </cmath> | \end{cases} </cmath> | ||
Find the possible values of '''k'''. | Find the possible values of '''k'''. | ||
| − | |||
==Solution== | ==Solution== | ||
If <math>x=\frac{1}{20}</math>, then <br /> | If <math>x=\frac{1}{20}</math>, then <br /> | ||
| Line 25: | Line 23: | ||
:<math>k=\pm 20</math><br /> | :<math>k=\pm 20</math><br /> | ||
Thus, the possible values of '''k''' are <math>(20,-20)</math>. | Thus, the possible values of '''k''' are <math>(20,-20)</math>. | ||
| − | + | ||
| + | |||
| + | [[Category:Introductory Algebra Problems]] | ||
Latest revision as of 12:01, 23 November 2007
Problem
Suppose
is either x or y in the following system:
Find the possible values of k.
Solution
If
, then
and
Solving gets us:
Thus, there is no solution when ![]()
If
, then
Thus, the possible values of k are
.