Difference between revisions of "2023 AMC 10A Problems/Problem 17"

m (Formatted answers)
(Solution)
Line 3: Line 3:
  
 
<math>\textbf{(A) } 84 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 88 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } 92</math>
 
<math>\textbf{(A) } 84 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 88 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } 92</math>
 +
 +
Let <math>ABCD</math> be a rectangle with <math>AB = 30</math> and <math>BC = 28</math>. Point <math>P</math> and <math>Q</math> lie on <math>\overline{BC}</math> and <math>\overline{CD}</math> respectively so that all sides of <math>\triangle{ABP}, \triangle{PCQ},</math> and <math>\triangle{QDA}</math> have integer lengths. What is the perimeter of <math>\triangle{APQ}</math>?
 +
 +
 +
<math>\text{A) } 84 \qquad \text{B) } 86 \qquad \text{C) } 88  \qquad \text{D) } 90 \qquad  \text{E) } 92</math>
  
 
==Solution==
 
==Solution==
[insert asy diagram]
+
We know that all side lengths are integers, so we can test Pythagorean triples for all triangles.
 +
 
 +
First, we focus on <math>\triangle{ABP}</math>. The length of <math>AB</math> is <math>30</math>, and the possible Pythagorean triples <math>\triangle{ABP}</math> can be are <math>(3, 4, 5), (5, 12, 13), (8, 15, 17)</math>, where the value of one leg is a factor of <math>30</math>. Testing these cases, we get that only <math>(8, 15, 17)</math> is a valid solution because the other triangles result in another leg that is greater than <math>28</math>, the length of <math>\overline{BC}</math>. Thus, we know that <math>BP = 16</math> and <math>AP = 34</math>.
 +
 
 +
Next, we move on to <math>\triangle{QDA}</math>. The length of <math>AD</math> is <math>28</math>, and the possible triples are <math>(3, 4, 5)</math> and <math>(7, 24, 25)</math>. Testing cases again, we get that <math>(3, 4, 5)</math> is our triple. We get the value of <math>DQ = 21</math>, and <math>AQ = 35</math>.
 +
 
 +
We know that <math>CQ = CD - DQ</math> which is <math>9</math>, and <math>CP = BC - BP</math> which is <math>12</math>. <math>\triangle{CPQ}</math> is therefore a right triangle with side length ratios <math>{3, 4, 5}</math>, and the hypotenuse is equal to <math>15</math>.
 +
<math>\triangle{APQ}</math> has side lengths <math>34, 35,</math> and <math>15,</math> so the perimeter is equal to <math>34 + 35 + 15 = \boxed{\textbf{(A) } 84}.</math>
  
Using knowledge of common Pythagorean triples and guess and check, we can find that <math>\triangle{ABP}</math> is a <math>8</math>-<math>15</math>-<math>17</math> triangle with side lengths <math>16</math>-<math>30</math>-<math>34</math>, and <math>\triangle{PCQ}</math> and <math>\triangle{QDA}</math> are <math>3</math>-<math>4</math>-<math>5</math> triangles with side lengths <math>9</math>-<math>12</math>-<math>15</math> and <math>21</math>-<math>28</math>-<math>35</math>, respectively.
+
~ Gabe Horn
  
Adding up the side lengths of <math>\triangle{APQ}</math> gives <math>34+15+35=\boxed{\textbf{(A) } 84}.</math>
+
==See Also==
 +
{{AMC10 box|year=2023|ab=A|num-b=16|num-a=18}}
 +
{{MAA Notice}}
  
~ItsMeNoobieboy
 
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2023|ab=A|num-b=16|num-a=18}}
 
{{AMC10 box|year=2023|ab=A|num-b=16|num-a=18}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:49, 9 November 2023

Problem

Let $ABCD$ be a rectangle with $AB = 30$ and $BC = 28$. Point $P$ and $Q$ lie on $\overline{BC}$ and $\overline{CD}$ respectively so that all sides of $\triangle{ABP}, \triangle{PCQ},$ and $\triangle{QDA}$ have integer lengths. What is the perimeter of $\triangle{APQ}$?

$\textbf{(A) } 84 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 88 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } 92$

Let $ABCD$ be a rectangle with $AB = 30$ and $BC = 28$. Point $P$ and $Q$ lie on $\overline{BC}$ and $\overline{CD}$ respectively so that all sides of $\triangle{ABP}, \triangle{PCQ},$ and $\triangle{QDA}$ have integer lengths. What is the perimeter of $\triangle{APQ}$?


$\text{A) } 84 \qquad \text{B) } 86 \qquad \text{C) } 88   \qquad \text{D) } 90 \qquad   \text{E) } 92$

Solution

We know that all side lengths are integers, so we can test Pythagorean triples for all triangles.

First, we focus on $\triangle{ABP}$. The length of $AB$ is $30$, and the possible Pythagorean triples $\triangle{ABP}$ can be are $(3, 4, 5), (5, 12, 13), (8, 15, 17)$, where the value of one leg is a factor of $30$. Testing these cases, we get that only $(8, 15, 17)$ is a valid solution because the other triangles result in another leg that is greater than $28$, the length of $\overline{BC}$. Thus, we know that $BP = 16$ and $AP = 34$.

Next, we move on to $\triangle{QDA}$. The length of $AD$ is $28$, and the possible triples are $(3, 4, 5)$ and $(7, 24, 25)$. Testing cases again, we get that $(3, 4, 5)$ is our triple. We get the value of $DQ = 21$, and $AQ = 35$.

We know that $CQ = CD - DQ$ which is $9$, and $CP = BC - BP$ which is $12$. $\triangle{CPQ}$ is therefore a right triangle with side length ratios ${3, 4, 5}$, and the hypotenuse is equal to $15$. $\triangle{APQ}$ has side lengths $34, 35,$ and $15,$ so the perimeter is equal to $34 + 35 + 15 = \boxed{\textbf{(A) } 84}.$

~ Gabe Horn

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png


See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png