Difference between revisions of "1989 AIME Problems/Problem 8"
m (toc) |
m (typo) |
||
| Line 7: | Line 7: | ||
Find the value of <math>16x_1+25x_2+36x_3+49x_4+64x_5+81x_6+100x_7^{}</math>. | Find the value of <math>16x_1+25x_2+36x_3+49x_4+64x_5+81x_6+100x_7^{}</math>. | ||
| − | + | __TOC__ | |
== Solution == | == Solution == | ||
=== Solution 1=== | === Solution 1=== | ||
Revision as of 12:59, 25 November 2007
Problem
Assume that
are real numbers such that
Find the value of
.
Solution
Solution 1
Let us try to derive a way to find the last expression in terms of the three given expressions. The coefficients of
in the first equation can be denoted as
, making its coefficients in the second equation as
and the third as
. We need to find a way to sum them up to make
.
Thus, we can write that
. FOILing out all of the terms, we get
. We can set up the three equation system:
Subtracting the second and third equations yields that
, so
and
. Thus, we have to add
.
Solution 2
Notice that we may rewrite the equations in the more compact form:
and
, where
and
and
is what we're trying to find.
Now undergo a paradigm shift: consider the polynomial in
(we are only treating the
as coefficients).
Notice that the degree of
must be
; it is a quadratic. We are given
as
and are asked to find
. Using the concept of finite differences (a prototype of differentiation) we find that the second differences of consecutive values is constant, so that by arithmetic operations we find
.
See also
| 1989 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 7 |
Followed by Problem 9 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||