Difference between revisions of "2013 Canadian MO Problems/Problem 4"
Line 12: | Line 12: | ||
<math>f_j(1/r) =\min (\frac{j}{r}, n)+\min\left(jr, n\right)=f_j(1/r)</math>, | <math>f_j(1/r) =\min (\frac{j}{r}, n)+\min\left(jr, n\right)=f_j(1/r)</math>, | ||
− | and <math>g_j(1/r) =\min (\lceil frac{j}{r}\rceil, n)+\min\left(\left\lceil | + | and <math>g_j(1/r) =\min (\lceil \frac{j}{r}\rceil, n)+\min\left(\left\lceil jr\right\rceil, n\right) = g_j(r)</math> |
Revision as of 17:34, 27 November 2023
Problem
Let be a positive integer. For any positive integer
and positive real number
, define
where
denotes the smallest integer greater than or equal to
. Prove that
for all positive real numbers
.
Solution
First thing to note on both functions is the following:
,
and
Case 1:
Since in the sum, the
f_j(r) =\min (jr, n)+\min\left(\frac{j}{r}, n\right)
~Tomas Diaz. orders@tomasdiaz.com Template:Olution