Difference between revisions of "Bisector"
(→Bisectors and tangent) |
(→Bisector and circumcircle) |
||
| Line 88: | Line 88: | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
| + | ==Some properties of the angle bisectors== | ||
| + | [[File:Bisector division B.png|450px|right]] | ||
| + | Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c,</math> | ||
| + | <math>\angle BAC = 2\alpha, \angle ABC = 2\beta, \angle ACB = 2\gamma</math> be given. | ||
| + | |||
| + | Let <math>\Omega,R,O,\omega,r,I</math> be the circumradius, circumcircle, circumcenter, inradius, incircle, and inradius of <math>\triangle ABC,</math> respectively. | ||
| + | |||
| + | Let segments <math>AA', BB',</math> and <math>CC'</math> be the angle bisectors of <math>\triangle ABC,</math> lines <math>AA', BB',</math> and <math>CC'</math> meet <math>\Omega</math> at <math>D,E,</math> and <math>F, \omega</math> meet <math>BC, AC,</math> and <math>AB</math> at <math>A'', B'', C''.</math> | ||
| + | |||
| + | Let <math>N</math> be the point on tangent to <math>\Omega</math> at point <math>B</math> such, that <math>NI || AC.</math> | ||
| + | Let bisector <math>AB</math> meet <math>BB'</math> at point <math>H</math> and <math>AA'</math> at point <math>G.</math> | ||
| + | |||
| + | Denote <math>Q</math> circumcenter of <math>\triangle ABB', P</math> - the point where line <math>AA'</math> meet circumcircle of <math>\triangle ABB'.</math> | ||
| + | |||
| + | Prove:<math> a) BN = \frac {2Rr}{|a-c|},</math> <math>b) \frac {FQ}{QG} = \frac {a}{c},</math> | ||
| + | |||
| + | c) lines <math>FD, A'C',</math> and <math>MP</math> are concurrent at <math>N.</math> | ||
| + | |||
| + | <i><b>Proof</b></i> | ||
| + | |||
| + | WLOG, <math>\alpha > \gamma.</math> A few preliminary formulas: | ||
| + | <cmath>\alpha + \beta + \gamma = 90^\circ \implies \sin (\alpha + \beta) = \cos \gamma.</cmath> | ||
| + | <cmath>\frac {a-b}{c} = \frac {\sin 2\alpha - \sin 2 \beta}{\sin 2\gamma} = \frac {2 \sin (\alpha - \beta) \cos(\alpha + \beta)} {2 \sin (\alpha + \beta) \cos (\alpha + \beta)} = \frac {\sin (\alpha - \beta)}{\cos \gamma}.</cmath> | ||
| + | <cmath>\frac {a+b}{c} = \frac {\sin 2\alpha + \sin 2 \beta}{\sin 2\gamma} = \frac {2 \sin (\alpha + \beta) \cos(\alpha - \beta)} {2 \sin (\alpha + \beta) \cos (\alpha + \beta)} = \frac {\cos (\alpha - \beta)}{\sin \gamma}.</cmath> | ||
| + | <cmath>\triangle ACC' : \frac {AC}{AC'} = \frac{\sin(180^\circ - 2 \alpha - \gamma)}{\sin \gamma}= \frac{\cos(\alpha - \beta)}{\sin \gamma}= \frac{a+b}{c}.</cmath> | ||
| + | <cmath>\angle FBC' = \gamma, \angle BFC' = 2 \alpha, BF = FI \implies \frac {FI}{FC'} = \frac {a+b}{c}.</cmath> <cmath>\frac {MG}{MF} = \frac {AM \tan \gamma}{AM \tan \alpha} = \frac {CB''}{AC''}=\frac{a+b-c}{b+c-a}.</cmath> | ||
| + | <cmath>\angle AOG = 2 \gamma, \angle AGM = 90^\circ - \alpha \implies \angle OGA = |90^\circ - \alpha – 2\gamma = |\beta - \gamma \implies \frac {GO}{AO} = \frac {|\sin (\beta - \gamma)|}{\cos \alpha} = \frac{|b-c|}{a}.</cmath> | ||
Revision as of 19:35, 18 December 2023
Contents
Division of bisector
Let a triangle
be given.
Let
and
be the bisectors of
he segments
and
meet at point
Find
Solution
Similarly
Denote
Bisector
Bisector
vladimir.shelomovskii@gmail.com, vvsss
Bisectors and tangent
Let a triangle
and it’s circumcircle
be given.
Let segments
and
be the internal and external bisectors of
The tangent to
at
meet
at point
Prove that
a)
b)
c)
Proof
a)
is circumcenter
b)
c)
vladimir.shelomovskii@gmail.com, vvsss
Proportions for bisectors
The bisectors
and
of a triangle ABC with
meet at point
Prove
Proof
Denote the angles
and
are concyclic.
The area of the
is
vladimir.shelomovskii@gmail.com, vvsss
Bisector and circumcircle
Let a triangle
be given.
Let segments
and
be the bisectors of
The lines
and
meet circumcircle
at points
respectively.
Find
Prove that circumcenter
of
lies on
Solution
Incenter
belong the bisector
which is the median of isosceles
vladimir.shelomovskii@gmail.com, vvsss
Some properties of the angle bisectors
Let a triangle
be given.
Let
be the circumradius, circumcircle, circumcenter, inradius, incircle, and inradius of
respectively.
Let segments
and
be the angle bisectors of
lines
and
meet
at
and
meet
and
at
Let
be the point on tangent to
at point
such, that
Let bisector
meet
at point
and
at point
Denote
circumcenter of
- the point where line
meet circumcircle of
Prove:
c) lines
and
are concurrent at
Proof
WLOG,
A few preliminary formulas: