Difference between revisions of "2024 IMO Problems/Problem 4"
(→Video Solution) |
|||
| Line 11: | Line 11: | ||
==Video Solution== | ==Video Solution== | ||
Part 1: Derive tangent values <math>\angle AIL</math> and <math>\angle AIK</math> with trig values of angles <math>\frac{A}{2}</math>, <math>\frac{B}{2}</math>, <math>\frac{C}{2}</math> | Part 1: Derive tangent values <math>\angle AIL</math> and <math>\angle AIK</math> with trig values of angles <math>\frac{A}{2}</math>, <math>\frac{B}{2}</math>, <math>\frac{C}{2}</math> | ||
| + | |||
https://youtu.be/p_AmooMMln4 | https://youtu.be/p_AmooMMln4 | ||
Part 2: Derive tangent values <math>\angle XPM</math> and <math>\angle YPM</math> with side lengths <math>AB</math>, <math>BC</math>, <math>CA</math>, where <math>M</math> is the midpoint of <math>BC</math> | Part 2: Derive tangent values <math>\angle XPM</math> and <math>\angle YPM</math> with side lengths <math>AB</math>, <math>BC</math>, <math>CA</math>, where <math>M</math> is the midpoint of <math>BC</math> | ||
| + | |||
| + | https://youtu.be/MgrghZ2ESAg | ||
Part 3: Prove that <math>\angle AIL + \angle XPM = 90^\circ</math> and <math>\angle AIK + \angle YPM = 90^\circ</math>. | Part 3: Prove that <math>\angle AIL + \angle XPM = 90^\circ</math> and <math>\angle AIK + \angle YPM = 90^\circ</math>. | ||
| + | https://youtu.be/iOp9mnmZyzU | ||
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
Revision as of 00:31, 24 July 2024
Let
be a triangle with
. Let the incentre and incircle of triangle
be
and
, respectively. Let
be the point on line
different from
such that the line
through
parallel to
is tangent to
. Similarly, let
be the point on line
different from
such that the line through
parallel to
is tangent to
. Let
intersect the circumcircle of
triangle
again at
. Let
and
be the midpoints of
and
, respectively.
Prove that
.
Video Solution
Video Solution
Part 1: Derive tangent values
and
with trig values of angles
,
,
Part 2: Derive tangent values
and
with side lengths
,
,
, where
is the midpoint of
Part 3: Prove that
and
.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)