Difference between revisions of "2021 CIME I Problems/Problem 1"
(created solution page) |
(→Solution) |
||
| (One intermediate revision by the same user not shown) | |||
| Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
| − | <math>\boxed{123}</math> | + | |
| + | <asy> | ||
| + | |||
| + | import geometry; | ||
| + | |||
| + | point B = (0,0); | ||
| + | point C = (16,0); | ||
| + | point A = (0,16); | ||
| + | point D = (16,16); | ||
| + | point P = A * 1/3; | ||
| + | point Q = C * 38/85 + D * 47/85; | ||
| + | |||
| + | // Square ABCD | ||
| + | draw(A--B--C--D--A); | ||
| + | dot(A); | ||
| + | label("A",A,NW); | ||
| + | dot(B); | ||
| + | label("B",B,SW); | ||
| + | dot(C); | ||
| + | label("C",C,SE); | ||
| + | dot(D); | ||
| + | label("D",D,NE); | ||
| + | |||
| + | // Segment PQ | ||
| + | draw(P--Q); | ||
| + | dot(P); | ||
| + | label("P",P,W); | ||
| + | dot(Q); | ||
| + | label("Q",Q,E); | ||
| + | |||
| + | </asy> | ||
| + | |||
| + | From the problem, we know that <math>[ABCD]=[APQD]+[BPQC]=20+21=41</math>. Thus, the side length of the square is <math>\sqrt{41}</math>. Furthermore, because <math>\tfrac{AP}{BP}=2</math>, <math>AP = \tfrac{2}{3}\sqrt{41}</math>. Because <math>\overline{DQ} \parallel \overline{AP}</math>, <math>APQD</math> is a trapezoid. Thus, if we let <math>DQ=x</math>, the area of <math>APQD</math> is <math>\frac{x+\tfrac{2\sqrt{41}}{3}}{2}*\sqrt{41}</math>. Equating this to the given area of <math>20</math>, we can now solve for <math>x</math>: | ||
| + | \begin{align*} | ||
| + | \frac{x+\tfrac{2\sqrt{41}}{3}}{2}*\sqrt{41} &= 20 \\ | ||
| + | \frac{\sqrt{41}x}{2}+\frac{\sqrt{41}}{3}*\sqrt{41} &= 20 \\ | ||
| + | 3\sqrt{41}x+82 &= 120 \\ | ||
| + | x &= \frac{38}{3\sqrt{41}} = \frac{38\sqrt{41}}{123} | ||
| + | \end{align*} | ||
| + | Because <math>CQ=\sqrt{41}-x</math>, we can now find a value for <math>\frac{DQ}{CQ}</math>: | ||
| + | \begin{align*} | ||
| + | \frac{DQ}{CQ} &= \frac{x}{\sqrt{41}-x} \\ | ||
| + | &= \frac{\tfrac{38\sqrt{41}}{123}}{\sqrt{41}-\tfrac{38\sqrt{41}}{123}} \\ | ||
| + | &= \frac{38}{123-38} \\ | ||
| + | &= \frac{38}{85} | ||
| + | \end{align*} | ||
| + | |||
| + | Thus, our answer is <math>38+85=\boxed{123}</math>. | ||
== See also == | == See also == | ||
{{CIME box|year=2021|n=I|before=First Problem|num-a=2}} | {{CIME box|year=2021|n=I|before=First Problem|num-a=2}} | ||
Latest revision as of 18:26, 24 July 2024
Problem
Let
be a square. Points
and
are on sides
and
respectively
such that the areas of quadrilaterals
and
are
and
respectively. Given that
then
where
and
are relatively prime positive integers. Find
.
Solution
From the problem, we know that
. Thus, the side length of the square is
. Furthermore, because
,
. Because
,
is a trapezoid. Thus, if we let
, the area of
is
. Equating this to the given area of
, we can now solve for
:
\begin{align*}
\frac{x+\tfrac{2\sqrt{41}}{3}}{2}*\sqrt{41} &= 20 \\
\frac{\sqrt{41}x}{2}+\frac{\sqrt{41}}{3}*\sqrt{41} &= 20 \\
3\sqrt{41}x+82 &= 120 \\
x &= \frac{38}{3\sqrt{41}} = \frac{38\sqrt{41}}{123}
\end{align*}
Because
, we can now find a value for
:
\begin{align*}
\frac{DQ}{CQ} &= \frac{x}{\sqrt{41}-x} \\
&= \frac{\tfrac{38\sqrt{41}}{123}}{\sqrt{41}-\tfrac{38\sqrt{41}}{123}} \\
&= \frac{38}{123-38} \\
&= \frac{38}{85}
\end{align*}
Thus, our answer is
.
See also
| 2021 CIME I (Problems • Answer Key • Resources) | ||
| Preceded by First Problem |
Followed by Problem 2 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All CIME Problems and Solutions | ||