During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

Difference between revisions of "Miquel's point"

(Triangle of circumcenters)
(Analogue of Miquel's point)
 
(3 intermediate revisions by the same user not shown)
Line 82: Line 82:
 
Similarly, one can prove that <math>\triangle ADE \sim \triangle OO_BO_C, \triangle BDF \sim \triangle OO_AO_C, \triangle CEF \sim \triangle OO_AO_B.</math>  
 
Similarly, one can prove that <math>\triangle ADE \sim \triangle OO_BO_C, \triangle BDF \sim \triangle OO_AO_C, \triangle CEF \sim \triangle OO_AO_B.</math>  
 
*[[Double perspective triangles]]
 
*[[Double perspective triangles]]
 +
'''vladimir.shelomovskii@gmail.com, vvsss'''
 +
 +
==Analogue of Miquel's point==
 +
[[File:5 circles.png|400px|right]]
 +
Let inscribed quadrilateral <math>ABB'A'</math> and
 +
 +
points <math>C \in AB', C' \in A'B', D \in A'B</math> be given.
 +
 +
<cmath>\theta = \odot CC'B', \Theta = \odot BDD', M = \theta \cap \Theta,</cmath>
 +
<cmath>E = C'D \cap \odot B'CC', D' = AB \cap CE, F = CC' \cap DD'.</cmath>
 +
Prove that points <math>A, B, B',</math> and <math>M</math> are concyclic.
 +
 +
<i><b>Proof</b></i>
 +
 +
<cmath>\angle BMB' =  \angle EMB' - \angle EMB =
 +
\angle ECB' - \angle ED'B  = \angle BAB' \blacksquare</cmath>
 +
 +
<i><b>Corollary</b></i>
 +
 +
The points <math>F, C, D',</math> and <math>M</math> are concyclic.
 +
 +
The points <math>F, C', D,</math> and <math>M</math> are concyclic.
 +
 +
'''vladimir.shelomovskii@gmail.com, vvsss'''
 +
==Six circles crossing point==
 +
[[File:Fixed Miquel point.png|410px|right]]
 +
Let <math>\triangle ABC,</math> point <math>P \in BC,</math> point <math>X \in \Omega = \odot ABC</math> be given.
 +
 +
Denote <math>Y = PX \cap \Omega, D = AX \cap BC, E = AY \cap BC,</math>
 +
<cmath>\omega = \odot ADE, \theta = \odot PEY, \Theta = \odot PDX,</cmath>
 +
<math>\sigma = \odot BP</math> tangent to <math>AB, \Sigma = \odot CP</math> tangent to <math>AC.</math>
 +
 +
Prove that the circles <math>\omega, \Omega, \theta, \Theta, \sigma,</math> and <math>\Sigma</math> have the common point.
 +
 +
<i><b>Proof</b></i>
 +
 +
Let <math>M = \omega \cap \Omega \ne A.</math>
 +
<cmath>\angle YCM = \angle YXM = \angle YAM = \angle EAM = \angle EDM \implies</cmath>
 +
<math>\angle PDM = \angle PXM \implies</math> points <math>M,P,D,</math> and <math>X</math> are concyclic, <math>M \in \Theta.</math> Similarly <math>M \in \theta, M</math> is the Miquel point of quadrungle <math>EDXY.</math>
 +
<cmath>\angle CMY = 180^\circ - \angle CAB - \angle BAY.</cmath>
 +
<cmath>\angle PMY = \angle PEY = \angle ABC - \angle BAY.</cmath>
 +
<cmath>\angle PMC = \angle CMY - \angle PMY = (180^\circ - \angle CAB - \angle BAY) - (\angle ABC - \angle BAY) = \angle ACB.</cmath>
 +
<math>\angle PMC = \angle ACB \implies AC</math> is tangent to <math>\Sigma.</math> Similarly, <math>AB</math> is tangent to <math>\sigma.</math>
 +
 
'''vladimir.shelomovskii@gmail.com, vvsss'''
 
'''vladimir.shelomovskii@gmail.com, vvsss'''

Latest revision as of 15:18, 21 October 2024

Miquel and Steiner's quadrilateral theorem

4 Miquel circles.png

Let four lines made four triangles of a complete quadrilateral. In the diagram these are $\triangle ABC, \triangle ADE, \triangle CEF, \triangle BDF.$

Prove that the circumcircles of all four triangles meet at a single point.

Proof

Let circumcircle of $\triangle ABC$ circle $\Omega$ cross the circumcircle of $\triangle CEF$ circle $\omega$ at point $M.$

Let $AM$ cross $\omega$ second time in the point $G.$

$CMGF$ is cyclic $\implies \angle BCM = \angle MGF.$

$AMCB$ is cyclic $\implies \angle BCM + \angle BAM = 180^\circ \implies$

$\angle BAG + \angle AGF = 180^\circ \implies AB||GF.$

$CMGF$ is cyclic $\implies \angle AME = \angle EFG.$

$AD||GF \implies \angle ADE + \angle DFG = 180^\circ \implies \angle ADE + \angle AME = 180^\circ \implies$

$ADEM$ is cyclic and circumcircle of $\triangle ADE$ contain the point $M.$

Similarly circumcircle of $\triangle BDF$ contain the point $M$ as desired.

vladimir.shelomovskii@gmail.com, vvsss

Circle of circumcenters

Miquel point.png

Let four lines made four triangles of a complete quadrilateral. In the diagram these are $\triangle ABC, \triangle ADE, \triangle CEF, \triangle BDF.$

Prove that the circumcenters of all four triangles and point $M$ are concyclic.

Proof

Let $\Omega, \omega, \Omega',$ and $\omega'$ be the circumcircles of $\triangle ABC, \triangle CEF, \triangle BDF,$ and $\triangle ADE,$ respectively.

In $\Omega' \angle MDF = \angle MBF.$

In $\omega' \angle MDE = \frac {\overset{\Large\frown} {ME}} {2}.$

$ME$ is the common chord of $\omega$ and $\omega' \implies \angle MOE = \overset{\Large\frown} {ME} \implies$

\[\angle MO'o' = \frac {\overset{\Large\frown} {ME}} {2} =  \angle MDE.\]

Similarly, $MF$ is the common chord of $\omega$ and $\Omega' \implies  \angle MDF = \angle Moo' = \angle MO'o'.$

Similarly, $MC$ is the common chord of $\Omega$ and $\omega' \implies  \angle MBC = \angle MOo' \implies$

$\angle MOo' = \angle MO'o' \implies$ points $M, O, O', o,$ and $o'$ are concyclic as desired.

vladimir.shelomovskii@gmail.com, vvsss

Triangle of circumcenters

Miquel perspector.png

Let four lines made four triangles of a complete quadrilateral.

In the diagram these are $\triangle ABC, \triangle ADE, \triangle CEF, \triangle BDF.$

Let points $O,O_A, O_B,$ and $O_C$ be the circumcenters of $\triangle ABC, \triangle ADE, \triangle BDF,$ and $\triangle CEF,$ respectively.

Prove that $\triangle O_AO_BO_C \sim \triangle ABC,$ and perspector of these triangles point $X$ is the second (different from $M$) point of intersection $\Omega \cap \Theta,$ where $\Omega$ is circumcircle of $\triangle ABC$ and $\Theta$ is circumcircle of $\triangle O_AO_BO_C.$

Proof

Quadrungle $MECF$ is cyclic $\implies \angle AEM = \angle BFM \implies$ \[\angle AO_AM = 2\angle AEM = 2 \angle BFM = \angle BO_BM.\] \[\angle CO_CM = 2\angle CFM = 2 \angle BFM = \angle BO_BM.\] $AO_A = MO_A, BO_B = MO_B, CO_C = MO_C \implies \triangle AO_AM \sim \triangle BO_BM \sim \triangle CO_CM.$

Spiral similarity sentered at point $M$ with rotation angle $\angle AMO_A = \angle BMO_B = CMO_C$ and the coefficient of homothety $\frac {AM}{MO_A} = \frac {BM}{MO_B} =\frac {CM}{MO_C}$ mapping $A$ to $O_A$, $B$ to $O_B$, $C$ to $O_C \implies \triangle O_AO_BO_C \sim \triangle ABC.$

$\triangle AO_AM, \triangle BO_BM, \triangle CO_CM$ are triangles in double perspective at point $M \implies$

These triangles are in triple perspective $\implies AO_A, BO_B, CO_C$ are concurrent at the point $X.$

The rotation angle $\triangle AO_AM$ to $\triangle BO_BM$ is $\angle O_AMO_B$ for sides $O_AM$ and $O_BM$ or angle between $AO_A$ and $BO_B$ which is $\angle AXB \implies M O_AO_BX$ is cyclic $\implies M O_AO_BXO_C$ is cyclic.

Therefore $\angle O_AXO_B = \angle  O_AO_CO_B = \angle ACB \implies ABCX$ is cyclic as desired.

Similarly, one can prove that $\triangle ADE \sim \triangle OO_BO_C, \triangle BDF \sim \triangle OO_AO_C, \triangle CEF \sim \triangle OO_AO_B.$

vladimir.shelomovskii@gmail.com, vvsss

Analogue of Miquel's point

5 circles.png

Let inscribed quadrilateral $ABB'A'$ and

points $C \in AB', C' \in A'B', D \in A'B$ be given.

\[\theta = \odot CC'B', \Theta = \odot BDD', M = \theta \cap \Theta,\] \[E = C'D \cap \odot B'CC', D' = AB \cap CE, F = CC' \cap DD'.\] Prove that points $A, B, B',$ and $M$ are concyclic.

Proof

\[\angle BMB' =  \angle EMB' - \angle EMB =  \angle ECB' - \angle ED'B  = \angle BAB' \blacksquare\]

Corollary

The points $F, C, D',$ and $M$ are concyclic.

The points $F, C', D,$ and $M$ are concyclic.

vladimir.shelomovskii@gmail.com, vvsss

Six circles crossing point

Fixed Miquel point.png

Let $\triangle ABC,$ point $P \in BC,$ point $X \in \Omega = \odot ABC$ be given.

Denote $Y = PX \cap \Omega, D = AX \cap BC, E = AY \cap BC,$ \[\omega = \odot ADE, \theta = \odot PEY, \Theta = \odot PDX,\] $\sigma = \odot BP$ tangent to $AB, \Sigma = \odot CP$ tangent to $AC.$

Prove that the circles $\omega, \Omega, \theta, \Theta, \sigma,$ and $\Sigma$ have the common point.

Proof

Let $M = \omega \cap \Omega \ne A.$ \[\angle YCM = \angle YXM = \angle YAM = \angle EAM = \angle EDM \implies\] $\angle PDM = \angle PXM \implies$ points $M,P,D,$ and $X$ are concyclic, $M \in \Theta.$ Similarly $M \in \theta, M$ is the Miquel point of quadrungle $EDXY.$ \[\angle CMY = 180^\circ - \angle CAB - \angle BAY.\] \[\angle PMY = \angle PEY = \angle ABC - \angle BAY.\] \[\angle PMC = \angle CMY - \angle PMY = (180^\circ - \angle CAB - \angle BAY) - (\angle ABC - \angle BAY) = \angle ACB.\] $\angle PMC = \angle ACB \implies AC$ is tangent to $\Sigma.$ Similarly, $AB$ is tangent to $\sigma.$

vladimir.shelomovskii@gmail.com, vvsss