Difference between revisions of "2004 IMO Problems/Problem 5"
(Created page with "In a convex quadrilateral <math>ABCD</math>, the diagonal <math>BD</math> bisects neither the angle <math>ABC</math> nor the angle <math>CDA</math>. The point <math>P</math> l...") |
m (→Solution) |
||
| (20 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| + | ==Problem== | ||
| + | |||
In a convex quadrilateral <math>ABCD</math>, the diagonal <math>BD</math> bisects neither the angle <math>ABC</math> | In a convex quadrilateral <math>ABCD</math>, the diagonal <math>BD</math> bisects neither the angle <math>ABC</math> | ||
nor the angle <math>CDA</math>. The point <math>P</math> lies inside <math>ABCD</math> and satisfies <cmath>\angle PBC = \angle DBA \text{ and } \angle PDC = \angle BDA.</cmath> | nor the angle <math>CDA</math>. The point <math>P</math> lies inside <math>ABCD</math> and satisfies <cmath>\angle PBC = \angle DBA \text{ and } \angle PDC = \angle BDA.</cmath> | ||
Prove that <math>ABCD</math> is a cyclic quadrilateral if and only if <math>AP = CP.</math> | Prove that <math>ABCD</math> is a cyclic quadrilateral if and only if <math>AP = CP.</math> | ||
| + | |||
| + | ==Solution== | ||
| + | Assume <math>ABCD</math> is cyclic, | ||
| + | let <math>K</math> be the intersection of <math>AC</math> and <math>BE</math>, let <math>L</math> be the intersection of <math>AC</math> and <math>DF</math>, | ||
| + | |||
| + | <asy> | ||
| + | size(6cm); | ||
| + | draw(circle((0,0),7.07)); | ||
| + | draw((-3.7,-6)-- (3.7,-6)); | ||
| + | draw((-6.8,-2)-- (6.8,-2)); | ||
| + | draw((-5,5)-- (5,5)); | ||
| + | draw((-5,5)-- (-3.7,-6)); | ||
| + | draw((-5,5)-- (3.7,-6)); | ||
| + | draw((-5,5)-- (-6.8,-2)); | ||
| + | draw((-5,5)-- (6.8,-2)); | ||
| + | draw((5,5)-- (-3.7,-6)); | ||
| + | draw((5,5)-- (3.7,-6)); | ||
| + | draw((5,5)-- (-6.8,-2)); | ||
| + | draw((5,5)-- (6.8,-2)); | ||
| + | draw((-3.7,-6)-- (-6.8,-2)); | ||
| + | draw((-3.7,-6)-- (6.8,-2)); | ||
| + | draw((3.7,-6)-- (-6.8,-2)); | ||
| + | draw((3.7,-6)-- (6.8,-2)); | ||
| + | label("$A$", (-6.8,-2), SW); | ||
| + | label("$B$", (-3.7,-6), SW); | ||
| + | label("$F$", (3.7,-6), SE); | ||
| + | label("$C$", (6.8,-2), E); | ||
| + | label("$E$", (5,5), E); | ||
| + | label("$D$", (-5,5), W); | ||
| + | label("$P$", (0,-1.3), N); | ||
| + | label("$K$", (-1.6,-1.5), E); | ||
| + | label("$L$", (0.8,-1.5) ); | ||
| + | </asy> | ||
| + | |||
| + | <math>\angle PBC=\angle DBA</math>, so <math>AD=CE</math>, and <math>DE//AC</math>. | ||
| + | <math>\angle PDC=\angle BDA</math>, so <math>AB=CF</math>, and <math>AC//BF</math>. | ||
| + | <math>\angle PLK=\frac12(\overarc{AD}+\overarc{CF})=\frac12(\overarc{CE}+\overarc{AB})=\angle PKL</math>, so <math>\triangle PKL</math> is an isosceles triangle. | ||
| + | Since <math>AC//BF</math>, so <math>\triangle PBF</math> and <math>\triangle PDE</math> are isosceles triangles. So <math>P</math> is on the perpendicular bisector of <math>BF</math>, since <math>ABFC</math> is | ||
| + | an isosceles trapezoid, so <math>P</math> is also on the perpendicular bisector of <math>AC</math>. So <math>PA=PC</math>. | ||
| + | |||
| + | |||
| + | |||
| + | ~szhangmath | ||
| + | |||
| + | ==See Also== | ||
| + | |||
| + | {{IMO box|year=2004|num-b=4|num-a=6}} | ||
Latest revision as of 21:17, 3 November 2024
Problem
In a convex quadrilateral
, the diagonal
bisects neither the angle
nor the angle
. The point
lies inside
and satisfies
Prove that
is a cyclic quadrilateral if and only if
Solution
Assume
is cyclic,
let
be the intersection of
and
, let
be the intersection of
and
,
, so
, and
.
, so
, and
.
, so
is an isosceles triangle. Since
, so
and
are isosceles triangles. So
is on the perpendicular bisector of
, since
is an isosceles trapezoid, so
is also on the perpendicular bisector of
. So
.
~szhangmath
See Also
| 2004 IMO (Problems) • Resources | ||
| Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
| All IMO Problems and Solutions | ||