Difference between revisions of "2024 AMC 12A Problems/Problem 23"
(→Solution 1 (Trigonometric Identities)) |
(→Solution 1 (Trigonometric Identities)) |
||
| Line 4: | Line 4: | ||
<math>\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84</math> | <math>\textbf{(A) } 28 \qquad \textbf{(B) } 68 \qquad \textbf{(C) } 70 \qquad \textbf{(D) } 72 \qquad \textbf{(E) } 84</math> | ||
| − | ==Solution 1 (Trigonometric Identities)== | + | ==Solution 1 (Trigonometric Identities)== |
First, notice that | First, notice that | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | Here, we use the | + | <cmath>\tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {3\pi}{16} + \tan^2 \frac {\pi}{16} \cdot \tan^2 \frac {5\pi}{16}+\tan^2 \frac {3\pi}{16} \cdot \tan^2 \frac {7\pi}{16}+\tan^2 \frac {5\pi}{16} \cdot \tan^2 \frac {7\pi}{16}?</cmath> |
| − | + | ||
| − | \tan^2 x + \tan^2 | + | |
| − | + | <cmath>=(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})*(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})</cmath> | |
| − | + | ||
| − | + | ||
| − | + | Here, we make use of the fact that | |
| − | + | ||
| − | + | <cmath>\tan^2 x+\tan^2 (\frac{\pi}{2}-x)</cmath> | |
| − | + | <cmath>=(\tan x+\tan (\frac{\pi}{2}-x))^2-2</cmath> | |
| + | <cmath>=\left(\frac{\sin x}{\cos x}+\frac{\sin (\frac{\pi}{2}-x)}{\cos (\frac{\pi}{2}-x)}\right)^2-2</cmath> | ||
| + | <cmath>=\left(\frac{\sin x \cos (\frac{\pi}{2}-x)+\sin (\frac{\pi}{2}-x) \cos x}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2</cmath> | ||
| + | <cmath>=\left(\frac{\sin \frac{\pi}{2}}{\cos x \cos (\frac{\pi}{2}-x)}\right)^2-2</cmath> | ||
| + | <cmath>=\left(\frac{1}{\cos x \sin x}\right)^2-2</cmath> | ||
| + | <cmath>=\left(\frac{2}{\sin 2x}\right)^2-2</cmath> | ||
| + | <cmath>=\frac{4}{\sin^2 2x}-2</cmath> | ||
Hence, | Hence, | ||
| − | |||
| − | |||
| − | |||
| − | + | <cmath>(\tan^2\frac{\pi}{16}+\tan^2 \frac{7\pi}{16})*(\tan^2\frac{3\pi}{16}+\tan^2 \frac{4\pi}{16})</cmath> | |
| − | \ | + | <cmath>=\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)</cmath> |
| − | \sin^2 \frac{\pi}{8} | + | |
| − | \sin^2 \frac{3\pi}{8} | + | Note that |
| − | \ | + | |
| + | <cmath>\sin^2 \frac{\pi}{8}=\frac{1-\cos \frac{\pi}{4}}{2}=\frac{2-\sqrt{2}}{4}</cmath> | ||
| + | |||
| + | and | ||
| + | |||
| + | <cmath>\sin^2 \frac{3\pi}{8}=\frac{1-\cos \frac{3\pi}{4}}{2}=\frac{2+\sqrt{2}}{4}</cmath> | ||
| + | |||
| + | Hence, | ||
| + | |||
| + | <cmath>\left(\frac{4}{\sin^2 \frac{\pi}{8}}-2\right)\left(\frac{4}{\sin^2 \frac{3\pi}{8}}-2\right)</cmath> | ||
| + | |||
| + | <cmath>=\left(\frac{16}{2-\sqrt{2}}-2\right)\left(\frac{16}{2+\sqrt{2}}-2\right)</cmath> | ||
| + | |||
| + | <cmath>=(14+8\sqrt{2})(14-8\sqrt{2})</cmath> | ||
| + | |||
| + | <cmath>=68</cmath> | ||
| − | + | Therefore, the answer is <math>\fbox{\textbf{(B) } 68}</math>. | |
| − | \ | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | ~tsun26 | |
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}} | {{AMC12 box|year=2024|ab=A|num-b=22|num-a=24}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Revision as of 20:03, 8 November 2024
Problem
What is the value of
==Solution 1 (Trigonometric Identities)==
First, notice that
Here, we make use of the fact that
Hence,
Note that
and
Hence,
Therefore, the answer is
.
~tsun26
See also
| 2024 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 22 |
Followed by Problem 24 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.