Difference between revisions of "2023 IMO Problems/Problem 4"
(→Solution) |
(→Solution) |
||
| (8 intermediate revisions by 5 users not shown) | |||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Let <math>x_1, x_2, \cdots , x_{2023}</math> be pairwise different positive real numbers such that | Let <math>x_1, x_2, \cdots , x_{2023}</math> be pairwise different positive real numbers such that | ||
| − | <cmath>a_n = \sqrt{(x_1+x_2+···+x_n)(\frac1{x_1} + \frac1{x_2} +···+\frac1{x_n})}</cmath> | + | <cmath>a_n = \sqrt{(x_1+x_2+ \text{···} +x_n)(\frac1{x_1} + \frac1{x_2} + \text{···} +\frac1{x_n})}</cmath> |
is an integer for every <math>n = 1,2,\cdots,2023</math>. Prove that <math>a_{2023} \ge 3034</math>. | is an integer for every <math>n = 1,2,\cdots,2023</math>. Prove that <math>a_{2023} \ge 3034</math>. | ||
| + | |||
| + | ==Video Solution(中文讲解)subtitle in English== | ||
| + | https://youtu.be/PcuPeV9tkhk | ||
| + | |||
| + | ==Video Solution== | ||
| + | https://www.youtube.com/watch?v=jZNIpapyGJQ [Video contains solutions to all day 2 problems] | ||
==Solution== | ==Solution== | ||
| − | We | + | We solve for <math>a_{n+2}</math> in terms of <math>a_n</math> and <math>x.</math> |
| − | + | <math>a_{n+2}^2 \\ | |
| + | = (\sum^{n+2}_{k=1}x_k)(\sum^{n+2}_{k=1}\frac1{x_k}) \\ | ||
| + | = (x_{n+1}+x_{n+2}+\sum^{n}_{k=1}x_k)(\frac{1}{x_{n+1}}+\frac{1}{x_{n+2}}+\sum^{n}_{k=1}\frac1{x_k}) \\ | ||
| + | = \frac{x_{n+1}}{x_{n+1}} + \frac{x_{n+1}}{x_{n+2}} + \frac{x_{n+2}}{x_{n+1}} + \frac{x_{n+2}}{x_{n+2}} + | ||
| + | \frac{1}{x_{n+1}}\sum^{n}_{k=1}x_k + x_{n+1}\sum^{n}_{k=1}\frac1{x_k} + \frac{1}{x_{n+2}}\sum^{n}_{k=1}x_k + x_{n+2}\sum^{n}_{k=1}\frac1{x_k} + (\sum^{n}_{k=1}x_k)(\sum^{n}_{k=1}\frac1{x_k}) \\ | ||
| + | = \frac{x_{n+1}}{x_{n+1}} + \frac{x_{n+1}}{x_{n+2}} + \frac{x_{n+2}}{x_{n+1}} + \frac{x_{n+2}}{x_{n+2}} + | ||
| + | \frac{1}{x_{n+1}}\sum^{n}_{k=1}x_k + x_{n+1}\sum^{n}_{k=1}\frac1{x_k} + \frac{1}{x_{n+2}}\sum^{n}_{k=1}x_k + x_{n+2}\sum^{n}_{k=1}\frac1{x_k} + a_n^2 \\ \text{}</math> | ||
| + | |||
| + | Again, by AM-GM, the above equation becomes | ||
| + | <math>a_{n+2}^2 \ge 4 \sqrt[4]{(\frac{x_{n+1}}{x_{n+1}})(\frac{x_{n+1}}{x_{n+2}})(\frac{x_{n+2}}{x_{n+1}})(\frac{x_{n+2}}{x_{n+2}})} + | ||
| + | 4\sqrt[4]{ | ||
| + | (\frac{1}{x_{n+1}}\sum^{n}_{k=1}x_k)(x_{n+1}\sum^{n}_{k=1}\frac1{x_k})(\frac{1}{x_{n+2}}\sum^{n}_{k=1}x_k)(x_{n+2}\sum^{n}_{k=1}\frac1{x_k}) | ||
| + | } | ||
| + | + a_n^2 = a_n^2+4a_n+4 = (a_n+2)^2 \\ \text{}</math> | ||
| + | |||
| + | Hence, <math>a_{n+2} \ge a_{n} + 2,</math> but equality is achieved only when <math>\frac{x_{n+1}}{x_{n+1}},\frac{x_{n+1}}{x_{n+2}},\frac{x_{n+2}}{x_{n+1}}, </math> and <math>\frac{x_{n+2}}{x_{n+2}}</math> are equal. They can never be equal because there are no two equal <math>x_k.</math>So <math>a_{2023} \ge a_1 + 3\times \frac{2023-1}{2} = 1 + 3033 = 3034</math> | ||
| + | |||
| + | == Video Solution == | ||
| + | https://youtu.be/8KJvfxJ57MA | ||
| + | |||
| + | ==See Also== | ||
| + | |||
| + | {{IMO box|year=2023|num-b=3|num-a=5}} | ||
Latest revision as of 19:39, 7 January 2025
Contents
Problem
Let
be pairwise different positive real numbers such that
is an integer for every
. Prove that
.
Video Solution(中文讲解)subtitle in English
Video Solution
https://www.youtube.com/watch?v=jZNIpapyGJQ [Video contains solutions to all day 2 problems]
Solution
We solve for
in terms of
and
Again, by AM-GM, the above equation becomes
Hence,
but equality is achieved only when
and
are equal. They can never be equal because there are no two equal
So
Video Solution
See Also
| 2023 IMO (Problems) • Resources | ||
| Preceded by Problem 3 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 5 |
| All IMO Problems and Solutions | ||