Difference between revisions of "2025 AMC 8 Problems/Problem 12"
m (Protected "2025 AMC 8 Problems/Problem 12" ([Edit=Allow only administrators] (expires 17:59, 29 January 2025 (UTC)) [Move=Allow only administrators] (expires 17:59, 29 January 2025 (UTC)))) |
|||
| Line 1: | Line 1: | ||
| − | The | + | The region shown below consists of 24 squares, each with side length 1 centimeter. What is the area, in square centimeters, of the largest circle that can fit inside the region, possibly touching the boundaries? |
| + | |||
| + | <asy> | ||
| + | import graph; | ||
| + | |||
| + | size(100); | ||
| + | |||
| + | pen gridPen = black; | ||
| + | |||
| + | void drawSquare(pair p) { | ||
| + | draw(box(p, p + (1,1)), gridPen); | ||
| + | } | ||
| + | |||
| + | int[][] grid = { | ||
| + | {0, 0, 0, 0, 0, 0}, | ||
| + | {0, 0, 1, 1, 0, 0}, | ||
| + | {0, 1, 1, 1, 1, 0}, | ||
| + | {1, 1, 1, 1, 1, 1}, | ||
| + | {1, 1, 1, 1, 1, 1}, | ||
| + | {0, 1, 1, 1, 1, 0}, | ||
| + | {0, 0, 1, 1, 0, 0}, | ||
| + | {0, 0, 0, 0, 0, 0} | ||
| + | }; | ||
| + | |||
| + | int rows = grid.length; | ||
| + | int cols = grid[0].length; | ||
| + | |||
| + | for (int i = 0; i < rows; ++i) { | ||
| + | for (int j = 0; j < cols; ++j) { | ||
| + | if (grid[i][j] == 1) { | ||
| + | drawSquare((j, rows - i - 1)); | ||
| + | } | ||
| + | } | ||
| + | } | ||
| + | </asy> | ||
| + | |||
| + | <math>\textbf{(A)}\ 3\pi\qquad \textbf{(B)}\ 4\pi\qquad \textbf{(C)}\ 5\pi\qquad \textbf{(D)}\ 6\pi\qquad \textbf{(E)}\ 8\pi</math> | ||
Revision as of 20:56, 29 January 2025
The region shown below consists of 24 squares, each with side length 1 centimeter. What is the area, in square centimeters, of the largest circle that can fit inside the region, possibly touching the boundaries?