Difference between revisions of "2023 AIME II Problems/Problem 13"
(→Solution 2 (Simple)) |
m (→Solution 2 (Simple): Fixed lack of divide by 2 in exponent) |
||
| (13 intermediate revisions by 5 users not shown) | |||
| Line 3: | Line 3: | ||
Let <math>A</math> be an acute angle such that <math>\tan A = 2 \cos A.</math> Find the number of positive integers <math>n</math> less than or equal to <math>1000</math> such that <math>\sec^n A + \tan^n A</math> is a positive integer whose units digit is <math>9.</math> | Let <math>A</math> be an acute angle such that <math>\tan A = 2 \cos A.</math> Find the number of positive integers <math>n</math> less than or equal to <math>1000</math> such that <math>\sec^n A + \tan^n A</math> is a positive integer whose units digit is <math>9.</math> | ||
| − | ==Solution== | + | ==Solution 1== |
Denote <math>a_n = \sec^n A + \tan^n A</math>. | Denote <math>a_n = \sec^n A + \tan^n A</math>. | ||
| Line 12: | Line 12: | ||
& = \left( \sec^{n-k} A + \tan^{n-k} A \right) \left( \sec^k A + \tan^k A \right) | & = \left( \sec^{n-k} A + \tan^{n-k} A \right) \left( \sec^k A + \tan^k A \right) | ||
- \sec^{n-k} A \tan^k A - \tan^{n-k} A \sec^k A \\ | - \sec^{n-k} A \tan^k A - \tan^{n-k} A \sec^k A \\ | ||
| − | & = a_{n-k} a_k - 2^k \sec^{n-k} A \cos^k A - 2^k \tan^{n-k} A \ | + | & = a_{n-k} a_k - 2^k \sec^{n-k} A \cos^k A - 2^k \tan^{n-k} A \cot^k A \\ |
& = a_{n-k} a_k - 2^k a_{n-2k} . | & = a_{n-k} a_k - 2^k a_{n-2k} . | ||
\end{align*} | \end{align*} | ||
| Line 84: | Line 84: | ||
</cmath> | </cmath> | ||
| − | ~Steven Chen (Professor Chen Education Palace, www. | + | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) |
==Solution 2 (Simple)== | ==Solution 2 (Simple)== | ||
| − | < | + | <cmath>\tan A = 2 \cos A \implies \sin A = 2 \cos^2 A \implies \sin^2 A + \cos^2 A = 4 \cos^4 A + \cos^2 A = 1</cmath> |
| − | < | + | <cmath>\implies \cos^2 A = \frac {\sqrt {17} - 1}{8}.</cmath> |
| + | <cmath>c_n = \sec^n A + \tan^n A = \frac {1}{\cos^n A} + 2^n \cos^n A = (4\cos^2 A +1)^{\frac {n}{2}}+(4 \cos^2 A)^{\frac {n}{2}} =</cmath> | ||
| + | <cmath>= \left(\frac {\sqrt {17} + 1}{2}\right)^{\frac {n}{2}}+ \left(\frac {\sqrt {17} - 1}{2}\right)^{\frac {n}{2}}.</cmath> | ||
| + | |||
| + | It is clear, that <math>c_n</math> is not integer if <math>n \ne 4k, k > 0.</math> | ||
| − | |||
Denote <math>x = \frac {\sqrt {17} + 1}{2}, y = \frac {\sqrt {17} - 1}{2} \implies</math> | Denote <math>x = \frac {\sqrt {17} + 1}{2}, y = \frac {\sqrt {17} - 1}{2} \implies</math> | ||
| − | < | + | <cmath>x \cdot y = 4, x + y = \sqrt{17}, x - y = 1 \implies x^2 + y^2 = (x - y)^2 + 2xy = 9 = c_4.</cmath> |
| + | |||
| + | <cmath>c_8 = x^4 + y^4 = (x^2 + y^2)^2 - 2x^2 y^2 = 9^2 - 2 \cdot 16 = 49.</cmath> | ||
| + | <cmath>c_{4k+4} = x^{2k+2} + y^{2k+2} = (x^{2k} + y^{2k})(x^2+y^2)- (x^2 y^2)(x^{2k-2}+y^{2k-2}) = 9 c_{4k}- 16 c_{4k – 4} \implies</cmath> | ||
| + | <cmath>c_{12} = 9 c_8 - 16 c_4 = 9 \cdot 49 - 16 \cdot 9 = 9 \cdot 33 = 297.</cmath> | ||
| + | <cmath>c_{16} = 9 c_{12} - 16 c_8 = 9 \cdot 297 - 16 \cdot 49 = 1889.</cmath> | ||
| + | <cmath>c_{12m + 4} \pmod{10} = 9 \cdot c_{12m} \pmod{10} - 16 \pmod{10} \cdot c_{12m - 4} \pmod{10} =</cmath> | ||
| + | <cmath>= (9 \cdot 7 - 6 \cdot 9) \pmod{10} = (3 - 4) \pmod{10} = 9.</cmath> | ||
| + | <cmath>c_{12m + 8}\pmod{10} = 9 \cdot c_{12m+4} \pmod{10} - 16 \pmod{10} \cdot c_{12m } \pmod{10} =</cmath> | ||
| + | <cmath>= (9 \cdot 9 - 6 \cdot 7) \pmod{10} = (1 - 2)\pmod{10} = 9.</cmath> | ||
| + | <cmath>c_{12m + 12} \pmod{10} = 9 \cdot c_{12m + 8} \pmod{10} - 16 \pmod{10} \cdot c_{12m + 4} \pmod{10} =</cmath> | ||
| + | <cmath>= (9 \cdot 9 - 6 \cdot 9) \pmod{10} = (1 - 4) \pmod{10} = 7 \implies</cmath> | ||
| + | |||
| + | The condition is satisfied iff <math>n = 12 k + 4</math> or <math>n = 12k + 8.</math> | ||
| + | |||
| + | If <math>n \le N</math> then the number of possible n is <math>\left\lfloor \frac{N}{4} \right\rfloor - \left\lfloor \frac{N}{12} \right\rfloor.</math> | ||
| − | <math> | + | For <math>N = 1000</math> we get <math>\left\lfloor \frac{1000}{4} \right\rfloor - \left\lfloor \frac{1000}{12} \right\rfloor = 250 - 83 = \boxed{167}.</math> |
| − | + | '''vladimir.shelomovskii@gmail.com, vvsss''' | |
| − | + | ==Note== | |
| + | A key idea in this solution is realizing that to calculate values of <math>a^n+b^n</math> is difficult directly, so we try to think about it recursively. | ||
| − | <math> | + | We then see how we can go from <math>a^n+b^n</math> to <math>a^{n+1}+b^{n+1}</math>, and learn that <math>(a^n+b^n)(a+b)-a^nb-ab^n=a^{n+1}b^{n+1}</math>. |
| − | < | + | So, letting <math>a^i+b^i=s_i</math>, <math>s_i=(a+b)s_{i-1}-(ab)s_{i-2}</math> where we set <math>n+1</math> as <math>i</math>, and <math>(a^n+b^n)=s_{i-1}</math>, as well as <math>(a^nb+ab^n)=(ab)(a^{n-1}+b^{n-1})=(ab)s_{i-2}</math>. |
| − | < | ||
| − | < | ||
| − | + | ~Bigbrain_2009 | |
| − | + | ==Video Solution== | |
| + | https://youtu.be/5Dpdi8IiUiw | ||
| − | + | ~MathProblemSolvingSkills.com | |
| − | |||
== See also == | == See also == | ||
Latest revision as of 12:22, 1 February 2025
Problem
Let
be an acute angle such that
Find the number of positive integers
less than or equal to
such that
is a positive integer whose units digit is
Solution 1
Denote
.
For any
, we have
Next, we compute the first several terms of
.
By solving equation
, we get
.
Thus,
,
,
,
,
.
In the rest of analysis, we set
.
Thus,
Thus, to get
an integer, we have
.
In the rest of analysis, we only consider such
. Denote
and
.
Thus,
with initial conditions
,
.
To get the units digit of
to be 9, we have
Modulo 2, for
, we have
Because
, we always have
for all
.
Modulo 5, for
, we have
We have
,
,
,
,
,
,
.
Therefore, the congruent values modulo 5 is cyclic with period 3.
To get
, we have
.
From the above analysis with modulus 2 and modulus 5, we require
.
For
, because
, we only need to count feasible
with
.
The number of feasible
is
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 2 (Simple)
It is clear, that
is not integer if
Denote
The condition is satisfied iff
or
If
then the number of possible n is
For
we get
vladimir.shelomovskii@gmail.com, vvsss
Note
A key idea in this solution is realizing that to calculate values of
is difficult directly, so we try to think about it recursively.
We then see how we can go from
to
, and learn that
.
So, letting
,
where we set
as
, and
, as well as
.
~Bigbrain_2009
Video Solution
~MathProblemSolvingSkills.com
See also
| 2023 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 12 |
Followed by Problem 14 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.