Difference between revisions of "2006 AIME I Problems/Problem 1"

(wik, move img to something more descriptive)
m (Formatting)
 
(10 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
In [[convex polygon|convex]] [[hexagon]] <math>ABCDEF</math>, all six sides are congruent, <math>\angle A</math> and <math>\angle D</math> are [[right angle]]s, and <math>\angle B, \angle C, \angle E,</math> and <math>\angle F</math> are [[congruent]]. The area of the hexagonal region is <math>2116(\sqrt{2}+1).</math> Find <math>AB</math>.
 
  
== Solution ==
+
In [[quadrilateral]] <math>ABCD</math>, <math>\angle B</math> is a [[right angle]], [[diagonal]] <math>\overline{AC}</math> is [[perpendicular]] to <math>\overline{CD}</math>, <math>AB=18</math>, <math>BC=21</math>, and <math>CD=14</math>. Find the [[perimeter]] of <math>ABCD</math>.
Let the side length be called <math>x</math>, so <math>x=AB=BC=CD=DE=EF=AF</math>.  
 
  
[[Image:2006_I_AIME-1.png]]
+
== Solution 1 ==
  
The diagonal <math>BF=\sqrt{AB^2+AF^2}=\sqrt{x^2+x^2}=x\sqrt{2}</math>. Then the areas of the triangles AFB and CDE in total are <math>\frac{x^2}{2}\cdot 2</math>,
+
We construct the following diagram:
and the area of the rectangle BCEF equals <math>x\cdot x\sqrt{2}=x^2\sqrt{2}</math>
+
<asy>
 +
pathpen = black;
 +
pair C=(0,0),D=(0,-14),A=(-sqrt(765),0),B=IP(circle(C,21),circle(A,18));
 +
D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C);
 +
D(rightanglemark(A,C,D,40));
 +
D(rightanglemark(A,B,C,40));
 +
</asy><!--Asymptote by joml88-->
 +
Using the [[Pythagorean Theorem]], we get the following two equations:
 +
<cmath>AD^2 = AC^2 + CD^2</cmath>
 +
<cmath>AC^2 = AB^2 + BC^2</cmath>
 +
Substituting <math>AB^2 + BC^2</math> for <math>AC^2</math> gives us <math>AD^2 = AB^2 + BC^2 + CD^2</math>. Plugging in the given information, we get <math>AD^2 = 18^2 + 21^2 + 14^2 = 961 \implies AD = 31</math>, so the perimeter is <math>AB+BC+CD+AD = 18+21+14+31 = \boxed{084}</math>.
  
Then we have to solve the equation
+
== See Also ==
<div style="text-align:center;">
 
<math>2116(\sqrt{2}+1)=x^2\sqrt{2}+x^2</math>.
 
  
<math>2116(\sqrt{2}+1)=x^2(\sqrt{2}+1)</math>
 
 
<math>2116=x^2</math>
 
 
<math>x=46</math></div>
 
 
Therefore, <math>AB</math> is <math>046</math>.
 
 
== See also ==
 
 
{{AIME box|year=2006|n=I|before=First Question|num-a=2}}
 
{{AIME box|year=2006|n=I|before=First Question|num-a=2}}
 
+
{{MAA Notice}}
[[Category:Intermediate Geometry Problems]]
+
[[Category:Introductory Geometry Problems]]

Latest revision as of 16:10, 3 February 2025

Problem

In quadrilateral $ABCD$, $\angle B$ is a right angle, diagonal $\overline{AC}$ is perpendicular to $\overline{CD}$, $AB=18$, $BC=21$, and $CD=14$. Find the perimeter of $ABCD$.

Solution 1

We construct the following diagram: [asy] pathpen = black; pair C=(0,0),D=(0,-14),A=(-sqrt(765),0),B=IP(circle(C,21),circle(A,18)); D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); D(rightanglemark(A,C,D,40)); D(rightanglemark(A,B,C,40)); [/asy] Using the Pythagorean Theorem, we get the following two equations: \[AD^2 = AC^2 + CD^2\] \[AC^2 = AB^2 + BC^2\] Substituting $AB^2 + BC^2$ for $AC^2$ gives us $AD^2 = AB^2 + BC^2 + CD^2$. Plugging in the given information, we get $AD^2 = 18^2 + 21^2 + 14^2 = 961 \implies AD = 31$, so the perimeter is $AB+BC+CD+AD = 18+21+14+31 = \boxed{084}$.

See Also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png