|
|
Line 3: |
Line 3: |
| | | |
| ~translated into English by Tomas Diaz. ~orders@tomasdiaz.com | | ~translated into English by Tomas Diaz. ~orders@tomasdiaz.com |
− |
| |
− | == Solution 1 ==
| |
− | {{Step 1: Let the sides of the triangle be
| |
− | a
| |
− | a,
| |
− | b
| |
− | b, and
| |
− | c
| |
− | c.
| |
− | Since the sides are in arithmetic progression, we can represent them as:
| |
− |
| |
− | b
| |
− | =
| |
− | a
| |
− | +
| |
− | c
| |
− | 2
| |
− | .
| |
− | b=
| |
− | 2
| |
− | a+c
| |
− |
| |
− | .
| |
− | So, the three sides are
| |
− | a
| |
− | a,
| |
− | b
| |
− | =
| |
− | a
| |
− | +
| |
− | c
| |
− | 2
| |
− | b=
| |
− | 2
| |
− | a+c
| |
− |
| |
− | , and
| |
− | c
| |
− | c, where
| |
− | a
| |
− | a and
| |
− | c
| |
− | c are the first and third terms of the arithmetic progression.
| |
− |
| |
− | Step 2: Let the heights corresponding to these sides be
| |
− | h
| |
− | a
| |
− | h
| |
− | a
| |
− |
| |
− | ,
| |
− | h
| |
− | b
| |
− | h
| |
− | b
| |
− |
| |
− | , and
| |
− | h
| |
− | c
| |
− | h
| |
− | c
| |
− |
| |
− | .
| |
− | We are also given that the heights are in arithmetic progression. So, we can represent the heights as:
| |
− |
| |
− | h
| |
− | b
| |
− | =
| |
− | h
| |
− | a
| |
− | +
| |
− | h
| |
− | c
| |
− | 2
| |
− | .
| |
− | h
| |
− | b
| |
− |
| |
− | =
| |
− | 2
| |
− | h
| |
− | a
| |
− |
| |
− | +h
| |
− | c
| |
− |
| |
− |
| |
− |
| |
− | .
| |
− | Step 3: Use the formula for the area of the triangle.
| |
− | The area
| |
− | A
| |
− | A of a triangle can be expressed using any side and the corresponding height:
| |
− |
| |
− | A
| |
− | =
| |
− | 1
| |
− | 2
| |
− | ×
| |
− | side
| |
− | ×
| |
− | corresponding height
| |
− | .
| |
− | A=
| |
− | 2
| |
− | 1
| |
− |
| |
− | ×side×corresponding height.
| |
− | Thus, we have the following three expressions for the area of the triangle:
| |
− |
| |
− | A
| |
− | =
| |
− | 1
| |
− | 2
| |
− | a
| |
− | h
| |
− | a
| |
− | =
| |
− | 1
| |
− | 2
| |
− | b
| |
− | h
| |
− | b
| |
− | =
| |
− | 1
| |
− | 2
| |
− | c
| |
− | h
| |
− | c
| |
− | .
| |
− | A=
| |
− | 2
| |
− | 1
| |
− |
| |
− | ah
| |
− | a
| |
− |
| |
− | =
| |
− | 2
| |
− | 1
| |
− |
| |
− | bh
| |
− | b
| |
− |
| |
− | =
| |
− | 2
| |
− | 1
| |
− |
| |
− | ch
| |
− | c
| |
− |
| |
− | .
| |
− | From these, we can express the heights in terms of the area and the side lengths:
| |
− |
| |
− | h
| |
− | a
| |
− | =
| |
− | 2
| |
− | A
| |
− | a
| |
− | ,
| |
− | h
| |
− | b
| |
− | =
| |
− | 2
| |
− | A
| |
− | b
| |
− | ,
| |
− | h
| |
− | c
| |
− | =
| |
− | 2
| |
− | A
| |
− | c
| |
− | .
| |
− | h
| |
− | a
| |
− |
| |
− | =
| |
− | a
| |
− | 2A
| |
− |
| |
− | ,h
| |
− | b
| |
− |
| |
− | =
| |
− | b
| |
− | 2A
| |
− |
| |
− | ,h
| |
− | c
| |
− |
| |
− | =
| |
− | c
| |
− | 2A
| |
− |
| |
− | .
| |
− | Step 4: Use the fact that the heights are in arithmetic progression.
| |
− | Since the heights are in arithmetic progression, we know that:
| |
− |
| |
− | h
| |
− | b
| |
− | =
| |
− | h
| |
− | a
| |
− | +
| |
− | h
| |
− | c
| |
− | 2
| |
− | .
| |
− | h
| |
− | b
| |
− |
| |
− | =
| |
− | 2
| |
− | h
| |
− | a
| |
− |
| |
− | +h
| |
− | c
| |
− |
| |
− |
| |
− |
| |
− | .
| |
− | Substitute the expressions for
| |
− | h
| |
− | a
| |
− | h
| |
− | a
| |
− |
| |
− | ,
| |
− | h
| |
− | b
| |
− | h
| |
− | b
| |
− |
| |
− | , and
| |
− | h
| |
− | c
| |
− | h
| |
− | c
| |
− |
| |
− | into this equation:
| |
− |
| |
− | 2
| |
− | A
| |
− | b
| |
− | =
| |
− | 2
| |
− | A
| |
− | a
| |
− | +
| |
− | 2
| |
− | A
| |
− | c
| |
− | 2
| |
− | .
| |
− | b
| |
− | 2A
| |
− |
| |
− | =
| |
− | 2
| |
− | a
| |
− | 2A
| |
− |
| |
− | +
| |
− | c
| |
− | 2A
| |
− |
| |
− |
| |
− |
| |
− | .
| |
− | Simplify both sides:
| |
− |
| |
− | 2
| |
− | A
| |
− | b
| |
− | =
| |
− | 2
| |
− | A
| |
− | 2
| |
− | (
| |
− | 1
| |
− | a
| |
− | +
| |
− | 1
| |
− | c
| |
− | )
| |
− | =
| |
− | A
| |
− | (
| |
− | 1
| |
− | a
| |
− | +
| |
− | 1
| |
− | c
| |
− | )
| |
− | .
| |
− | b
| |
− | 2A
| |
− |
| |
− | =
| |
− | 2
| |
− | 2A
| |
− |
| |
− | (
| |
− | a
| |
− | 1
| |
− |
| |
− | +
| |
− | c
| |
− | 1
| |
− |
| |
− | )=A(
| |
− | a
| |
− | 1
| |
− |
| |
− | +
| |
− | c
| |
− | 1
| |
− |
| |
− | ).
| |
− | Canceling
| |
− | A
| |
− | A from both sides (assuming
| |
− | A
| |
− | ≠
| |
− | 0
| |
− | A
| |
− |
| |
− | =0):
| |
− |
| |
− | 2
| |
− | b
| |
− | =
| |
− | 1
| |
− | a
| |
− | +
| |
− | 1
| |
− | c
| |
− | .
| |
− | b
| |
− | 2
| |
− |
| |
− | =
| |
− | a
| |
− | 1
| |
− |
| |
− | +
| |
− | c
| |
− | 1
| |
− |
| |
− | .
| |
− | Step 5: Substitute the relation
| |
− | b
| |
− | =
| |
− | a
| |
− | +
| |
− | c
| |
− | 2
| |
− | b=
| |
− | 2
| |
− | a+c
| |
− |
| |
− | .
| |
− | We know that
| |
− | b
| |
− | =
| |
− | a
| |
− | +
| |
− | c
| |
− | 2
| |
− | b=
| |
− | 2
| |
− | a+c
| |
− |
| |
− | . Substituting this into the equation above:
| |
− |
| |
− | 2
| |
− | a
| |
− | +
| |
− | c
| |
− | 2
| |
− | =
| |
− | 1
| |
− | a
| |
− | +
| |
− | 1
| |
− | c
| |
− | .
| |
− | 2
| |
− | a+c
| |
− |
| |
− |
| |
− | 2
| |
− |
| |
− | =
| |
− | a
| |
− | 1
| |
− |
| |
− | +
| |
− | c
| |
− | 1
| |
− |
| |
− | .
| |
− | Simplifying the left-hand side:
| |
− |
| |
− | 4
| |
− | a
| |
− | +
| |
− | c
| |
− | =
| |
− | 1
| |
− | a
| |
− | +
| |
− | 1
| |
− | c
| |
− | .
| |
− | a+c
| |
− | 4
| |
− |
| |
− | =
| |
− | a
| |
− | 1
| |
− |
| |
− | +
| |
− | c
| |
− | 1
| |
− |
| |
− | .
| |
− | Now, combine the terms on the right-hand side:
| |
− |
| |
− | 1
| |
− | a
| |
− | +
| |
− | 1
| |
− | c
| |
− | =
| |
− | a
| |
− | +
| |
− | c
| |
− | a
| |
− | c
| |
− | .
| |
− | a
| |
− | 1
| |
− |
| |
− | +
| |
− | c
| |
− | 1
| |
− |
| |
− | =
| |
− | ac
| |
− | a+c
| |
− |
| |
− | .
| |
− | Thus, the equation becomes:
| |
− |
| |
− | 4
| |
− | a
| |
− | +
| |
− | c
| |
− | =
| |
− | a
| |
− | +
| |
− | c
| |
− | a
| |
− | c
| |
− | .
| |
− | a+c
| |
− | 4
| |
− |
| |
− | =
| |
− | ac
| |
− | a+c
| |
− |
| |
− | .
| |
− | Step 6: Cross-multiply to simplify.
| |
− | Cross-multiply to eliminate the fractions:
| |
− |
| |
− | 4
| |
− | a
| |
− | c
| |
− | =
| |
− | (
| |
− | a
| |
− | +
| |
− | c
| |
− | )
| |
− | 2
| |
− | .
| |
− | 4ac=(a+c)
| |
− | 2
| |
− | .
| |
− | Expanding both sides:
| |
− |
| |
− | 4
| |
− | a
| |
− | c
| |
− | =
| |
− | a
| |
− | 2
| |
− | +
| |
− | 2
| |
− | a
| |
− | c
| |
− | +
| |
− | c
| |
− | 2
| |
− | .
| |
− | 4ac=a
| |
− | 2
| |
− | +2ac+c
| |
− | 2
| |
− | .
| |
− | Rearrange the terms:
| |
− |
| |
− | 4
| |
− | a
| |
− | c
| |
− | −
| |
− | 2
| |
− | a
| |
− | c
| |
− | =
| |
− | a
| |
− | 2
| |
− | +
| |
− | c
| |
− | 2
| |
− | ,
| |
− | 4ac−2ac=a
| |
− | 2
| |
− | +c
| |
− | 2
| |
− | ,
| |
− | 2
| |
− | a
| |
− | c
| |
− | =
| |
− | a
| |
− | 2
| |
− | +
| |
− | c
| |
− | 2
| |
− | .
| |
− | 2ac=a
| |
− | 2
| |
− | +c
| |
− | 2
| |
− | .
| |
− | Step 7: Recognize the equation.
| |
− | We now have the equation:
| |
− |
| |
− | 2
| |
− | a
| |
− | c
| |
− | =
| |
− | a
| |
− | 2
| |
− | +
| |
− | c
| |
− | 2
| |
− | .
| |
− | 2ac=a
| |
− | 2
| |
− | +c
| |
− | 2
| |
− | .
| |
− | This is a well-known equation that holds if and only if
| |
− | a
| |
− | =
| |
− | c
| |
− | a=c, meaning the triangle is isosceles with
| |
− | a
| |
− | =
| |
− | c
| |
− | a=c.
| |
− |
| |
− | Step 8: Conclude that the triangle is equilateral.
| |
− | If
| |
− | a
| |
− | =
| |
− | c
| |
− | a=c, then from the relation
| |
− | b
| |
− | =
| |
− | a
| |
− | +
| |
− | c
| |
− | 2
| |
− | b=
| |
− | 2
| |
− | a+c
| |
− |
| |
− | , we see that
| |
− | b
| |
− | =
| |
− | a
| |
− | =
| |
− | c
| |
− | b=a=c. Therefore, all three sides of the triangle are equal, which means the triangle is equilateral.
| |
− |
| |
− | Conclusion:
| |
− | We have shown that if the sides and the heights of a triangle are both in arithmetic progression, the triangle must be equilateral.}}
| |
| | | |
| == See also == | | == See also == |
| https://www.oma.org.ar/enunciados/ibe3.htm | | https://www.oma.org.ar/enunciados/ibe3.htm |