Difference between revisions of "Mock AIME I 2012 Problems/Problem 10"
(Created page, added solution) |
(Solution 2) |
||
Line 1: | Line 1: | ||
− | == Problem | + | == Problem == |
Consider the function <math>f(n,x) = \dfrac{\sin{x} + \sin{2x} + \sin{3x} + \cdots + \sin{(n-1)x} + \sin{nx}}{\cos{x} + \cos{2x} + \cos{3x} + \cdots + \cos{(n-1)x} + \cos{nx}}</math>. Find the sum of all <math>x</math> for which <math>f(23,x)=f(33,x)</math>, where <math>x</math> is measured in degrees and <math>100<x<200</math>. | Consider the function <math>f(n,x) = \dfrac{\sin{x} + \sin{2x} + \sin{3x} + \cdots + \sin{(n-1)x} + \sin{nx}}{\cos{x} + \cos{2x} + \cos{3x} + \cdots + \cos{(n-1)x} + \cos{nx}}</math>. Find the sum of all <math>x</math> for which <math>f(23,x)=f(33,x)</math>, where <math>x</math> is measured in degrees and <math>100<x<200</math>. | ||
− | == Solution 1 == | + | == Solution 1 (Sum-to-Product) == |
Recalling the trigonometric [[Trigonometric identities#Sum-to-product identities|sum-to-product identities]], we can rearrange terms and evaluate <math>f(23,x)</math> as follows: | Recalling the trigonometric [[Trigonometric identities#Sum-to-product identities|sum-to-product identities]], we can rearrange terms and evaluate <math>f(23,x)</math> as follows: | ||
\begin{align*} | \begin{align*} | ||
Line 17: | Line 17: | ||
Now, we desire to find all <math>x\in(100^{\circ},200^{\circ})</math> that satisfy the following equation: <cmath>f(22,x)=f(33,x)\iff\tan{12x}=\tan{17x}.</cmath> Because <math>\tan x</math> has a period of <math>180^{\circ}</math> and it only reaches any given value once per period (by virtue of being monotone increasing between its asymptotes), we know that <math>5x</math> must then be some integer multiple of tangent's period, <math>180^{\circ}</math>. Thus, <math>x</math> must be a multiple of <math>\tfrac{180^{\circ}}5=36^{\circ}</math>, and so the possible values of <math>x</math> between <math>100^{\circ}</math> and <math>200^{\circ}</math> are <math>108^{\circ}</math>, <math>144^{\circ}</math>, and <math>180^{\circ}</math>. | Now, we desire to find all <math>x\in(100^{\circ},200^{\circ})</math> that satisfy the following equation: <cmath>f(22,x)=f(33,x)\iff\tan{12x}=\tan{17x}.</cmath> Because <math>\tan x</math> has a period of <math>180^{\circ}</math> and it only reaches any given value once per period (by virtue of being monotone increasing between its asymptotes), we know that <math>5x</math> must then be some integer multiple of tangent's period, <math>180^{\circ}</math>. Thus, <math>x</math> must be a multiple of <math>\tfrac{180^{\circ}}5=36^{\circ}</math>, and so the possible values of <math>x</math> between <math>100^{\circ}</math> and <math>200^{\circ}</math> are <math>108^{\circ}</math>, <math>144^{\circ}</math>, and <math>180^{\circ}</math>. | ||
− | Now, we can add these three values to compute our final answer: | + | Now, after checking for extraneous solutions (of which there are none), we can add these three values to compute our final answer: |
+ | <cmath>108+144+180=\boxed{432}.</cmath> | ||
+ | |||
+ | == Solution 2 (Integral Calculus, non-rigorous) == | ||
+ | Recall that the average value of some function <math>g(x)</math> over the interval <math>[a,b]</math> is given by <cmath>\frac1{b-a}\int_a^b g(x)dx.</cmath> Then, we can approximate (hopefully well enough) the above expression for <math>f(n,x)</math> by multiplying <math>n</math> by the average of the function <math>\sin(kx)</math> over the interval <math>[0,n]</math>: | ||
+ | \begin{align*} | ||
+ | f(n,x) &= \dfrac{\sin{x} + \sin{2x} + \sin{3x} + \cdots + \sin{(n-1)x} + \sin{nx}}{\cos{x} + \cos{2x} + \cos{3x} + \cdots + \cos{(n-1)x} + \cos{nx}} \\ | ||
+ | &\approx \dfrac{n(\frac1n\int_0^n\sin(kx)dk)}{n(\frac1n\int_0^n\cos(kx)dk)} \\ | ||
+ | &= \dfrac{-(\frac1x\cos(kx))|^n_0}{(\frac1x\sin(kx))|^n_0} \\ | ||
+ | &= \dfrac{1-\cos(nx)}{\sin(nx)} | ||
+ | \end{align*} | ||
+ | |||
+ | Now, we desire to find <math>x\in(100^{\circ},200^{\circ})</math> that satisfy the equation: <cmath>f(23,x)=f(33,x)\iff\frac{1-\cos(23x)}{\sin(23x)}=\frac{1-\cos(33x)}{\sin(33x)}.</cmath> Recalling the [[Trigonometric identities#Half-angle identities|tangent half-angle identities]], we can solve as follows: | ||
+ | \begin{align*} | ||
+ | \frac{1-\cos(23x)}{\sin(23x)} &= \frac{1-\cos(33x)}{\sin(33x)} \\ | ||
+ | \tan\left(\frac{23}2x\right) &= \tan\left(\frac{33}2x\right) = \tan\left(\frac{23}2x+5x\right). | ||
+ | \end{align*} | ||
+ | |||
+ | Now, because <math>\tan x</math> has a period of <math>180^{\circ}</math> and it only reaches any given value once per period (by virtue of being monotone increasing between its asymptotes), we know that <math>5x</math> must then be some integer multiple of tangent's period, <math>180^{\circ}</math>. Thus, <math>x</math> must be a multiple of <math>\tfrac{180^{\circ}}5=36^{\circ}</math>, and so the possible values of <math>x</math> between <math>100^{\circ}</math> and <math>200^{\circ}</math> are <math>108^{\circ}</math>, <math>144^{\circ}</math>, and <math>180^{\circ}</math>. | ||
+ | |||
+ | Now, after checking for extraneous solutions (of which there are none), we can add these three values to compute our final answer: | ||
<cmath>108+144+180=\boxed{432}.</cmath> | <cmath>108+144+180=\boxed{432}.</cmath> |
Revision as of 19:35, 10 March 2025
Problem
Consider the function . Find the sum of all
for which
, where
is measured in degrees and
.
Solution 1 (Sum-to-Product)
Recalling the trigonometric sum-to-product identities, we can rearrange terms and evaluate as follows:
\begin{align*}
f(23, x) &= \dfrac{\sin{x} + \sin{2x} + \sin{3x} + \cdots + \sin{22x} + \sin{23x}}{\cos{x} + \cos{2x} + \cos{3x} + \cdots + \cos{22x} + \cos{23x}} \\
&= \dfrac{(\sin{x} + \sin{23x}) + (\sin{2x} + \sin{22x}) + \cdots + (\sin{11x} + \sin{13x}) + \sin{12x}}{(\cos{x} + \cos{23x}) + (\cos{2x} + \cos{22x}) + \cdots + (\cos{11x} + \cos{13x}) + \cos{12x}} \\
&= \dfrac{2\sin{12x}\cos{11x}+2\sin{12x}\cos{10x}+\cdots+2\sin{12x}\cos{x}+\sin{12x}}{2\cos{12x}\cos{11x}+2\cos{12x}\cos{10x}+\cdots+2\cos{12x}\cos{x}+\cos{12x}} \\
&= \dfrac{2\sin{12x}(\cos{11x}+\cos{10x}+\cos{9x}+\cdots+\cos{x}+1)}{2\cos{12x}(\cos{11x}+\cos{10x}+\cdots+\cos{x}+1)} \\
&= \dfrac{\sin{12x}}{\cos{12x}} \\
&= \tan{12x}
\end{align*}
Likewise, we can show that
Now, we desire to find all that satisfy the following equation:
Because
has a period of
and it only reaches any given value once per period (by virtue of being monotone increasing between its asymptotes), we know that
must then be some integer multiple of tangent's period,
. Thus,
must be a multiple of
, and so the possible values of
between
and
are
,
, and
.
Now, after checking for extraneous solutions (of which there are none), we can add these three values to compute our final answer:
Solution 2 (Integral Calculus, non-rigorous)
Recall that the average value of some function over the interval
is given by
Then, we can approximate (hopefully well enough) the above expression for
by multiplying
by the average of the function
over the interval
:
\begin{align*}
f(n,x) &= \dfrac{\sin{x} + \sin{2x} + \sin{3x} + \cdots + \sin{(n-1)x} + \sin{nx}}{\cos{x} + \cos{2x} + \cos{3x} + \cdots + \cos{(n-1)x} + \cos{nx}} \\
&\approx \dfrac{n(\frac1n\int_0^n\sin(kx)dk)}{n(\frac1n\int_0^n\cos(kx)dk)} \\
&= \dfrac{-(\frac1x\cos(kx))|^n_0}{(\frac1x\sin(kx))|^n_0} \\
&= \dfrac{1-\cos(nx)}{\sin(nx)}
\end{align*}
Now, we desire to find that satisfy the equation:
Recalling the tangent half-angle identities, we can solve as follows:
\begin{align*}
\frac{1-\cos(23x)}{\sin(23x)} &= \frac{1-\cos(33x)}{\sin(33x)} \\
\tan\left(\frac{23}2x\right) &= \tan\left(\frac{33}2x\right) = \tan\left(\frac{23}2x+5x\right).
\end{align*}
Now, because has a period of
and it only reaches any given value once per period (by virtue of being monotone increasing between its asymptotes), we know that
must then be some integer multiple of tangent's period,
. Thus,
must be a multiple of
, and so the possible values of
between
and
are
,
, and
.
Now, after checking for extraneous solutions (of which there are none), we can add these three values to compute our final answer: