Difference between revisions of "Mock AIME I 2012 Problems/Problem 14"
(Created page with "==Problem== Let <math>S</math> be the set of complex numbers of the form <math>c+di</math> such that <math>c+di = (a+bi)^{12}</math> for some integers <math>a</math> and <math>b<...") |
m (see also box) |
||
Line 14: | Line 14: | ||
(3) <math>11\mid g</math>. For the sake of contradiction assume that <math>11</math> does not divide any of <math>a,b,a+b,a-b,a^2-3b^2,3a^2-b^2</math>. This gives <math>b\not\equiv 0\pmod{11}</math> and <math>a\not\in\{ 0,\pm b,\pm 2b,\pm 5b\}\pmod{11}\implies a\in\{ \pm 3b,\pm 4b\}\pmod{11}</math>. If <math>a\equiv \pm 3b\pmod{11}</math>, then <math>a^4-14a^2b^2+b^4\equiv (3b)^4-3(3b)^2b^2+b^4\equiv 55b^4\equiv 0\pmod{11}</math>. If <math>a\equiv \pm 4b\pmod{11}</math>, then <math>b\equiv \pm 3a\mod{11}</math>, and this case is symmetric to <math>a\equiv \pm 3b\pmod{11}</math>. So <math>11\nmid ab(a+b)(a-b)(a^2-3b^2)(3a^2-b^2)\implies 11\mid (a^4-14a^2b^2+b^4)</math>, and we're done. | (3) <math>11\mid g</math>. For the sake of contradiction assume that <math>11</math> does not divide any of <math>a,b,a+b,a-b,a^2-3b^2,3a^2-b^2</math>. This gives <math>b\not\equiv 0\pmod{11}</math> and <math>a\not\in\{ 0,\pm b,\pm 2b,\pm 5b\}\pmod{11}\implies a\in\{ \pm 3b,\pm 4b\}\pmod{11}</math>. If <math>a\equiv \pm 3b\pmod{11}</math>, then <math>a^4-14a^2b^2+b^4\equiv (3b)^4-3(3b)^2b^2+b^4\equiv 55b^4\equiv 0\pmod{11}</math>. If <math>a\equiv \pm 4b\pmod{11}</math>, then <math>b\equiv \pm 3a\mod{11}</math>, and this case is symmetric to <math>a\equiv \pm 3b\pmod{11}</math>. So <math>11\nmid ab(a+b)(a-b)(a^2-3b^2)(3a^2-b^2)\implies 11\mid (a^4-14a^2b^2+b^4)</math>, and we're done. | ||
+ | |||
+ | ==See Also== | ||
+ | *<math>\textbf{Last Problem}</math> | ||
+ | *[[Mock AIME I 2012 Problems/Problem 14| Previous Problem]] | ||
+ | *[[Mock AIME I 2012 Problems]] |
Revision as of 10:01, 11 March 2025
Problem
Let be the set of complex numbers of the form
such that
for some integers
and
. Find the largest integer that must divide
for all numbers in
.
Solution
Plug in
and factor to
Let be the desired
of all
. Since
and
, our
is at most
. We now prove that this is indeed the case:
(1) . This is easy:
is always divisible by
because one of
is always even.
(2) . First,
because always either
or
. Second,
because either
divides one of
or
by FLT.
(3) . For the sake of contradiction assume that
does not divide any of
. This gives
and
. If
, then
. If
, then
, and this case is symmetric to
. So
, and we're done.