|
|
Line 1: |
Line 1: |
| + | |
| + | |
| ==Division of bisector== | | ==Division of bisector== |
| [[File:Bisector division.png|350px|right]] | | [[File:Bisector division.png|350px|right]] |
Line 21: |
Line 23: |
| Bisector <math>BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies</math> | | Bisector <math>BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies</math> |
| <cmath>\frac {BD}{BB'} = \frac{a+c}{a+2b+c} \implies \frac {B'D}{BD} = \frac {BB' - BD}{BD} = \frac{2b}{a+c} = 2\frac {B'I}{BI}.</cmath> | | <cmath>\frac {BD}{BB'} = \frac{a+c}{a+2b+c} \implies \frac {B'D}{BD} = \frac {BB' - BD}{BD} = \frac{2b}{a+c} = 2\frac {B'I}{BI}.</cmath> |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
| | | |
| ==Bisectors and tangent== | | ==Bisectors and tangent== |
Line 45: |
Line 46: |
| | | |
| c) <cmath> \frac {AM}{CM} = \frac {MD – AD}{MD + CD} =\frac {1 –\frac {AD}{BM}}{1 + \frac {CD}{BM}} = \frac {AD}{CD} : \frac {CD}{AD} = \frac {AD^2}{CD^2}.</cmath> | | c) <cmath> \frac {AM}{CM} = \frac {MD – AD}{MD + CD} =\frac {1 –\frac {AD}{BM}}{1 + \frac {CD}{BM}} = \frac {AD}{CD} : \frac {CD}{AD} = \frac {AD^2}{CD^2}.</cmath> |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
| | | |
| ==Proportions for bisectors A== | | ==Proportions for bisectors A== |
Line 73: |
Line 73: |
| Incenter <math>J</math> belong the bisector <math>BI</math> which is the median of isosceles <math>\triangle IDB.</math> | | Incenter <math>J</math> belong the bisector <math>BI</math> which is the median of isosceles <math>\triangle IDB.</math> |
| | | |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
| ==Some properties of the angle bisectors== | | ==Some properties of the angle bisectors== |
| [[File:Bisector division B.png|450px|right]] | | [[File:Bisector division B.png|450px|right]] |
Line 120: |
Line 119: |
| <cmath>\frac {NF}{ND} = \frac {c}{a} \cdot \frac {b+c-a}{a+b-c}, \frac {IC'}{C'F} = \frac {a+b-c}{c}, \frac {IA'}{A'D} = \frac {c+b-a}{a} \implies</cmath> | | <cmath>\frac {NF}{ND} = \frac {c}{a} \cdot \frac {b+c-a}{a+b-c}, \frac {IC'}{C'F} = \frac {a+b-c}{c}, \frac {IA'}{A'D} = \frac {c+b-a}{a} \implies</cmath> |
| <math>N, C', A'</math> are collinear and so on. Using Cheva's theorem we get the result. | | <math>N, C', A'</math> are collinear and so on. Using Cheva's theorem we get the result. |
− |
| |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
| | | |
| ==Proportions for bisectors== | | ==Proportions for bisectors== |
Line 138: |
Line 135: |
| <cmath>\frac {CD}{AE} = \frac {BC}{AB} = \frac {a}{c}.</cmath> | | <cmath>\frac {CD}{AE} = \frac {BC}{AB} = \frac {a}{c}.</cmath> |
| <cmath>\frac {DI}{IE} = \frac {DI}{CD} \cdot \frac {AE}{IE}\cdot \frac {CD}{AE}= \frac {c}{a+b+c} \cdot \frac {a+b+c} {a} \cdot \frac {a}{c} = 1.</cmath> | | <cmath>\frac {DI}{IE} = \frac {DI}{CD} \cdot \frac {AE}{IE}\cdot \frac {CD}{AE}= \frac {c}{a+b+c} \cdot \frac {a+b+c} {a} \cdot \frac {a}{c} = 1.</cmath> |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| + | |
| ==Bisectrix and bisector== | | ==Bisectrix and bisector== |
| [[File:Bisector div.png|400px|right]] | | [[File:Bisector div.png|400px|right]] |
Line 190: |
Line 187: |
| | | |
| Points <math>A, C, D,</math> and <math>F</math> are concyclic. | | Points <math>A, C, D,</math> and <math>F</math> are concyclic. |
− |
| |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
| | | |
| ==Seven lines crossing point== | | ==Seven lines crossing point== |
Line 254: |
Line 249: |
| Similarly points <math>V, M,</math> and <math>D</math> are collinear. | | Similarly points <math>V, M,</math> and <math>D</math> are collinear. |
| | | |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
− | ==Division of bisector==
| |
− | [[File:Bisector division.png|350px|right]]
| |
− | Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c</math> be given.
| |
− |
| |
− | Let <math>AA', BB',</math> and <math>CC'</math> be the bisectors of <math>\triangle ABC.</math>
| |
− |
| |
− | he segments <math>BB'</math> and <math>A'C'</math> meet at point <math>D.</math> Find <cmath>\frac {BI}{BB'}, \frac {DA'}{DC'}, \frac {BD}{BB'}.</cmath>
| |
− |
| |
− | <i><b>Solution</b></i>
| |
− |
| |
− | <cmath>\frac {BA'}{CA'} = \frac {BA}{CA} = \frac {c}{b}, BA' + CA' = BC = a \implies BA' = \frac {a \cdot c}{b+c}.</cmath>
| |
− |
| |
− | Similarly <math>BC' = \frac {a \cdot c}{a+b}, B'C = \frac {a \cdot b}{a+b}. </math>
| |
− | <cmath>\frac {BI}{IB'} = \frac {a}{B'C} = \frac{a+c}{b} \implies \frac {BI}{BB'} = \frac {a+c}{a + b +c} \implies \frac {B'I}{BI} = \frac {B'B - BI}{BI} =\frac {b}{a+c}.</cmath>
| |
− |
| |
− | <cmath> \frac {DA'}{DC'} = \frac {BA'}{BC'} = \frac {a+ b}{b +c}.</cmath>
| |
− |
| |
− | Denote <math>\angle ABC = 2 \beta.</math>
| |
− | Bisector <math>BB' = 2 \frac {a \cdot c}{a + c} \cos \beta.</math>
| |
− |
| |
− | Bisector <math>BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies</math>
| |
− | <cmath>\frac {BD}{BB'} = \frac{a+c}{a+2b+c} \implies \frac {B'D}{BD} = \frac {BB' - BD}{BD} = \frac{2b}{a+c} = 2\frac {B'I}{BI}.</cmath>
| |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
− |
| |
− | ==Bisectors and tangent==
| |
− | [[File:Bisectors tangent.png|450px|right]]
| |
− | Let a triangle <math>\triangle ABC (\angle BAC > \angle BCA)</math> and it’s circumcircle <math>\Omega</math> be given.
| |
− |
| |
− | Let segments <math>BD, D \in AC</math> and <math>BE, E \in AC,</math> be the internal and external bisectors of <math>\triangle ABC.</math>
| |
− | The tangent to <math>\Omega</math> at <math>B</math> meet <math>AC</math> at point <math>M.</math>
| |
− | Prove that
| |
− |
| |
− | a)<math>EM = DM = BM,</math>
| |
− |
| |
− | b)<math> \frac {1}{BM} = \frac {1}{AD} - \frac {1}{CD},</math>
| |
− |
| |
− | c)<math>\frac {AD^2}{CD^2}=\frac {AM}{CM}.</math>
| |
− |
| |
− | <i><b>Proof</b></i>
| |
− |
| |
− | a) <math>\angle ABM = \angle ACB = \frac {\overset{\Large\frown} {AB}}{2} \implies \angle ADB = \angle CBD + \angle BCD = \angle ABD + \angle ABM = \angle MBD \implies BM = DM.</math>
| |
− | <math>\angle DBE = 90^\circ \implies M</math> is circumcenter <math>\triangle BDE \implies EM = MD.</math>
| |
− |
| |
− | b) <math> \frac {AD}{DC} = \frac {AB}{BC} = \frac {AE}{CE} = \frac {DE – AD}{DE + CD} \implies \frac {1}{AD} - \frac {1}{CD} = \frac {2}{DE} =\frac {1}{BM}.</math>
| |
− |
| |
− | c) <cmath> \frac {AM}{CM} = \frac {MD – AD}{MD + CD} =\frac {1 –\frac {AD}{BM}}{1 + \frac {CD}{BM}} = \frac {AD}{CD} : \frac {CD}{AD} = \frac {AD^2}{CD^2}.</cmath>
| |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
− |
| |
− | ==Proportions for bisectors A==
| |
− |
| |
− | ==Bisector and circumcircle==
| |
− | [[File:Bisector divi.png|350px|right]]
| |
− | Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c</math> be given.
| |
− | Let segments <math>AA', BB',</math> and <math>CC'</math> be the bisectors of <math>\triangle ABC.</math>
| |
− | The lines <math>AA', BB',</math> and <math>CC'</math> meet circumcircle <math>ABC (\Omega</math> at points <math>D, E, F,</math> respectively.
| |
− |
| |
− | Find <math>\frac {B'I}{B'E}, \frac {DF}{AC}.</math>
| |
− | Prove that circumcenter <math>J</math> of <math>\triangle BA'I</math> lies on <math>DF.</math>
| |
− |
| |
− | <i><b>Solution</b></i>
| |
− |
| |
− | <cmath>\frac {B'I}{B'E} = \frac {B'I}{BB'} \cdot \frac {BB'^2}{B'E \cdot BB'} = \frac {a+c}{a + b +c} \cdot \frac {BB'^2}{B'A \cdot B'C}.</cmath>
| |
− |
| |
− | <cmath>BB'^2 = 4 \cos^2 \beta \frac {a^2 c^2}{(a+c)^2}, 4 \cos^2 \beta = \frac {(a+b+c)(a - b +c)}{ac},</cmath>
| |
− | <cmath>B'A \cdot B'C = \frac {ab}{a+c} \cdot \frac{bc}{a+c} = \frac {a b^2 c}{(a+c)^2} \implies</cmath>
| |
− | <cmath>\frac {B'I}{B'E} = \frac {a+c}{b} -1.</cmath>
| |
− |
| |
− | <cmath>\angle IAC = \angle DAC = \angle CFD = \angle IFD, \angle FID = \angle AIC \implies \triangle IFD \sim \triangle IAC \implies \frac {DF}{AC} = \frac {IF}{AI}.</cmath>
| |
− | <cmath>AI = \sqrt {bc \frac {b+c-a}{a+b+c}}, FI = c \sqrt {\frac {ab}{(a+b-c)(a+b+c)}}.</cmath>
| |
− | <cmath>\frac {DF}{AC} = \frac {IF}{AI} = \sqrt {\frac {ac}{(a+b-c)(-a+b+c)}}.</cmath>
| |
− | <cmath>\overset{\Large\frown} {BD} + \overset{\Large\frown} {FA} + \overset{\Large\frown} {AE}= \angle BAC + \angle ACB + \angle ABC = 180^\circ \implies FD \perp BE.</cmath>
| |
− | <cmath>2\angle IBD = 2\angle EBD = \overset{\Large\frown} {EC} + \overset{\Large\frown} {CD} = \overset{\Large\frown} {AE} + \overset{\Large\frown} {BD} = 2 \angle BID.</cmath>
| |
− | Incenter <math>J</math> belong the bisector <math>BI</math> which is the median of isosceles <math>\triangle IDB.</math>
| |
− |
| |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
− | ==Some properties of the angle bisectors==
| |
− | [[File:Bisector division B.png|450px|right]]
| |
− | Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c,</math>
| |
− | <math>\angle BAC = 2\alpha, \angle ABC = 2\beta, \angle ACB = 2\gamma</math> be given.
| |
− |
| |
− | Let <math>R, \Omega, O, r, \omega, I</math> be the circumradius, circumcircle, circumcenter, inradius, incircle, and inradius of <math>\triangle ABC,</math> respectively.
| |
− |
| |
− | Let segments <math>AA', BB',</math> and <math>CC'</math> be the angle bisectors of <math>\triangle ABC,</math> lines <math>AA', BB',</math> and <math>CC'</math> meet <math>\Omega</math> at <math>D,E,</math> and <math>F, \omega</math> meet <math>BC, AC,</math> and <math>AB</math> at <math>A'', B'', C''.</math>
| |
− |
| |
− | Let <math>N</math> be the point on tangent to <math>\Omega</math> at point <math>B</math> such, that <math>NI || AC.</math>
| |
− |
| |
− | Let bisector <math>AB</math> line <math>FM</math> meet <math>BB'</math> at point <math>H</math> and <math>AA'</math> at point <math>G (O \in FM).</math>
| |
− |
| |
− | Denote <math>Q</math> circumcenter of <math>\triangle ABB', P</math> - the point where bisector <math>AA'</math> meet circumcircle of <math>\triangle ABB'.</math>
| |
− |
| |
− | Prove:<math> a) BN = \frac {2Rr}{|a-c|},</math> <math>b) \frac {FQ}{QG} = \frac {a}{c},</math>
| |
− |
| |
− | c) lines <math>FD, A'C',</math> and <math>MP</math> are concurrent at <math>N.</math>
| |
− |
| |
− | <i><b>Proof</b></i>
| |
− |
| |
− | WLOG, <math>\alpha > \gamma.</math> A few preliminary formulas:
| |
− | <cmath>\alpha + \beta + \gamma = 90^\circ \implies \sin (\alpha + \beta) = \cos \gamma.</cmath>
| |
− | <cmath>\frac {a-b}{c} = \frac {\sin 2\alpha - \sin 2 \beta}{\sin 2\gamma} = \frac {2 \sin (\alpha - \beta) \cos(\alpha + \beta)} {2 \sin (\alpha + \beta) \cos (\alpha + \beta)} = \frac {\sin (\alpha - \beta)}{\cos \gamma}.</cmath>
| |
− | <cmath>\frac {a+b}{c} = \frac {\sin 2\alpha + \sin 2 \beta}{\sin 2\gamma} = \frac {2 \sin (\alpha + \beta) \cos(\alpha - \beta)} {2 \sin (\alpha + \beta) \cos (\alpha + \beta)} = \frac {\cos (\alpha - \beta)}{\sin \gamma}.</cmath>
| |
− | <cmath>a^2 + c^2 - 2ac\cos 2\beta = b^2 \implies 4 \cos^2 \beta = \frac {(a+b+c)(a+c-b)}{ac}.</cmath>
| |
− | a) <cmath>\triangle ACC' : \frac {AC}{AC'} = \frac{\sin(180^\circ - 2 \alpha - \gamma)}{\sin \gamma}= \frac{\cos(\alpha - \beta)}{\sin \gamma}= \frac{a+b}{c}.</cmath>
| |
− | <cmath>\angle FBC' = \gamma, \angle BFC' = 2 \alpha, BF = FI \implies \frac {FI}{FC'} = \frac {a+b}{c}.</cmath>
| |
− | <cmath>\frac {MG}{MF} = \frac {AM \tan \alpha}{BM \tan \gamma} =\frac {\tan \alpha}{\tan \gamma} = \frac {CB''}{AC''}=\frac{a+b-c}{b+c-a}.</cmath>
| |
− | <cmath>\angle AOG = 2 \gamma, \angle AGM = 90^\circ - \alpha \implies \angle OAG = |90^\circ - \alpha - 2\gamma| = |\beta - \gamma| \implies \frac {GO}{AO} = \frac {|\sin (\beta - \gamma)|}{\cos \alpha} = \frac{|b-c|}{a}.</cmath>
| |
− | <cmath>\angle BFD = \alpha,\angle NBD = 2\gamma + 2\beta + \alpha = 180^\circ - \alpha, \angle NBF = \angle BDF = \gamma \implies</cmath>
| |
− | <cmath>\frac {NB}{NF} = \frac {ND}{NB} = \frac {\sin \gamma}{\sin \alpha} \implies \frac {NF}{ND} = \frac {\sin^2 \gamma}{\sin^2 \alpha} = \frac {\sin 2\gamma}{\sin 2\alpha} \cdot \frac {\tan \gamma}{\tan \alpha} = \frac {c}{a} \cdot \frac{b+c-a}{a+b-c}.</cmath>
| |
− | <cmath>\angle NBI = \angle NIB = 2\gamma + \beta = 90^\circ +\gamma - \alpha \implies \cos \angle NBI = \sin (\alpha - \gamma).</cmath>
| |
− |
| |
− | <cmath>BI = \frac {BC''}{\cos \beta} = \frac {a+c-b}{2\cos \beta} \implies NB = \frac {BI}{2 \sin |\alpha - \gamma|}
| |
− | = \frac{a+c-b}{4\cos^2 \beta} \cdot \frac {\cos \beta}{\sin |\alpha - \gamma|} = \frac{abc}{|a-c|(a+b+c)} = \frac {2Rr}{|a-c|}.</cmath>
| |
− |
| |
− | b)<cmath>\triangle AIC \sim \triangle FID, k = \frac {IB''}{IL} = \frac {2r}{IB} = 2 \sin \beta \implies FD = \frac {AC}{k} = \frac {b}{2 \sin \beta}.</cmath>
| |
− | <math>Q</math> is the circumcenter of <math>\triangle ABB' \implies \angle BQM = \angle AB'B \implies \angle ABQ = \alpha - \gamma.</math>
| |
− | <cmath>BQ = \frac {BM}{\cos (\alpha - \gamma)} = \frac {c}{2} \cdot \frac {b}{(a+c) \sin \beta} = \frac {bc}{2(a+c) \sin \beta}.</cmath>
| |
− | <cmath>PQ \perp BB' \implies PQ || FD \implies \triangle GQP \sim \triangle GFD, k = \frac{FD}{QP} = \frac{FD}{QB} = \frac {a+c}{c} \implies \frac {FQ}{QG} = k - 1 = \frac {a}{c} = \frac {DP}{PG}.</cmath>
| |
− |
| |
− | c)<math>BF = FI, BD = DI, BN = NI \implies N, F, D</math> are collinear.
| |
− |
| |
− | <cmath>\frac {NF}{ND} = \frac {c}{a} \cdot \frac {b+c-a}{a+b-c}, \frac {IC'}{C'F} = \frac {a+b-c}{c}, \frac {IA'}{A'D} = \frac {c+b-a}{a} \implies</cmath>
| |
− | <math>N, C', A'</math> are collinear and so on. Using Cheva's theorem we get the result.
| |
− |
| |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
− |
| |
− | ==Proportions for bisectors==
| |
− | [[File:Bisector 60.png|400px|right]]
| |
− | The bisectors <math>AE</math> and <math>CD</math> of a triangle ABC with <math>\angle B = 60^\circ</math> meet at point <math>I.</math>
| |
− |
| |
− | Prove <math>\frac {CD}{AE} = \frac {BC}{AB}, DI = IE.</math>
| |
− |
| |
− | <i><b>Proof</b></i>
| |
− |
| |
− | Denote the angles <math>A = 2\alpha, B = 2\beta = 60^\circ, C = 2 \gamma.</math>
| |
− | <math>\angle AIC = 180^\circ - \alpha - \gamma = 90^\circ + \beta = 120^\circ \implies B, D, I,</math> and <math>E</math> are concyclic.
| |
− | <cmath>\angle BEA = \angle BEI = \angle ADC.</cmath>
| |
− | The area of the <math>\triangle ABC</math> is
| |
− | <cmath>[ABC] = AB \cdot h_C = AB \cdot CD \cdot \sin \angle ADC = BC \cdot AE \cdot \sin \angle AEB \implies</cmath>
| |
− | <cmath>\frac {CD}{AE} = \frac {BC}{AB} = \frac {a}{c}.</cmath>
| |
− | <cmath>\frac {DI}{IE} = \frac {DI}{CD} \cdot \frac {AE}{IE}\cdot \frac {CD}{AE}= \frac {c}{a+b+c} \cdot \frac {a+b+c} {a} \cdot \frac {a}{c} = 1.</cmath>
| |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
− | ==Bisectrix and bisector==
| |
− | [[File:Bisector div.png|400px|right]]
| |
− | Let triangle <math>\triangle ABC</math> be given.
| |
− |
| |
− | Let <math>I</math> be the incenter, <math>O</math> be the circumcenter, <math>\Omega</math> be the circumcircle of <math>\triangle ABC,</math>
| |
− | <cmath>D = AI \cap BC, A' = AI \cap \Omega, B' = BI \cap \Omega, C' = CI \cap \Omega.</cmath>
| |
− | Let <math>\ell</math> be the bisector of <math>AD.</math>
| |
− | <cmath>E = BI \cap \ell, F = CI \cap \ell, K = DE \cap AC, L = DF \cap AB.</cmath>
| |
− | Let <math>Q</math> be the circumcenter of <math>\odot LFI.</math>
| |
− |
| |
− | Prove that the points <math>A, K, E, I, L,</math> and <math>F</math> are concyclic and <math>Q = AO \cap B'C'.</math>
| |
− |
| |
− | <i><b>Proof</b></i>
| |
− |
| |
− | Denote <math>a = BC, b = AC, c = AB, P = AD \cap B'C', M</math> the midpoint <math>AD, M\in \ell.</math>
| |
− |
| |
− | It is known that <math>P</math> is the midpoint <math>AI, B'C' \perp AD,\frac {AI}{ID} = \frac{A'I}{A'D}=\frac{b+c}{a}.</math>
| |
− |
| |
− | (see [[Bisector | Bisector and circumcircle]])
| |
− | <cmath>\frac {PI}{PM} = \frac{AI / 2}{AD / 2 - AI / 2}= \frac {AI}{ID} = \frac{A'I}{A'D}=\frac{b+c}{a} \implies \frac {IP}{IM} = \frac{IA'}{ID}=\frac{b+c}{b+c-a}.</cmath>
| |
− | <math>B'C' || FE \implies </math> the homothety centered at point <math>I</math> with ratio <math>k = \frac{b+c}{b+c-a}</math> maps
| |
− |
| |
− | <math>\triangle A'B'C'</math> into <math>\triangle DFE</math> and <math>\Omega = \odot A'B'C'</math> into <math>\odot DEF.</math>
| |
− |
| |
− | Point <math>A</math> is symmetrical to point <math>D</math> with respect to the line <math>\ell,</math> so radii of <math>\odot AEF</math> and <math> \odot DEF</math> are equal.
| |
− |
| |
− | Denote <math>r</math> the radius of <math>\odot AEF, R</math> the radius of <math>\Omega.</math>
| |
− |
| |
− | Then <math>\frac {r}{R} = \frac{b+c}{b+c-a} = \frac{AI}{AA'}. </math>
| |
− | <math>CC' \perp DE, \angle ACI = \angle DCI \implies CK = CD =\frac {ab}{b+c}.</math>
| |
− |
| |
− | Similarly, <math>BD = BL = \frac {ac}{b+c}.</math>
| |
− |
| |
− | So <math>\frac{AK}{AC} = \frac{AC - CK}{AC} =\frac{b+c}{b+c-a} = k = \frac{AL}{AB}.</math>
| |
− |
| |
− | Therefore, the homothety centered at point <math>A</math> with ratio <math>k</math> maps quadrangle <math>ALIK</math> into quadrangle <math>ABA'C</math>
| |
− | and <math>\odot ALIK</math> into <math>\Omega.</math>
| |
− |
| |
− | <math>\angle ALF = \angle ALD = 90^\circ + \angle ABI, \angle AIF = \angle AIC' = 90^\circ - \angle ABI \implies</math> points <math>A, L, F,</math> and <math>I</math> are concyclic.
| |
− |
| |
− | Similarly, points <math>A, K, E,</math> and <math>I</math> are concyclic. So points <math>A, K, E, L, F,</math> and <math>I</math> are concyclic.
| |
− |
| |
− | The center <math>Q</math> of this circle lyes on radius <math>AO</math> of <math>\Omega</math> and <math>\frac{AO}{AQ} = \frac{b+c}{b+c-a}.</math>
| |
− |
| |
− | The homothety centered at point <math>A</math> with ratio <math>k</math> maps the point <math>P</math> (midpoint <math>AI</math>) into midpoint <math>AA',</math> so <math>Q \in B'PC'.</math>
| |
− |
| |
− | <i><b>Corollary</b></i>
| |
− |
| |
− | Points <math>A, B, D,</math> and <math>E</math> are concyclic <math>(\angle AED + \angle ABC = 180^\circ.)</math>
| |
− |
| |
− | Points <math>A, C, D,</math> and <math>F</math> are concyclic.
| |
− |
| |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| |
− |
| |
− | ==Seven lines crossing point==
| |
− | [[File:2024 11 B.png|390px|right]]
| |
− | Let <math>I, \Omega, M, M_0</math> be the incenter, circumcircle, and the midpoints of sides <math>BC, AB</math> of a <math>\triangle ABC.</math>
| |
− |
| |
− | Let <math>AA'', BB'', CC''</math> be the bisectors of a <math>\triangle ABC.</math>
| |
− |
| |
− | <math>A' = AA'' \cap \Omega, B' = BB'' \cap \Omega, C' = CC'' \cap \Omega, L</math> be the midpoint of <math>BB''.</math>
| |
− |
| |
− | The points <math>U \in AA''</math> and <math>V \in CC''</math> be such points that <math>L \in UV, UV \perp BB''.</math>
| |
− |
| |
− | Denote points <math>A_0 = B'C' \cap AB, A_1 = B'C' \cap AC,</math>
| |
− | <cmath>B_0 = BC \cap A'C', B_1 = AB \cap A'C', C_0 = AC \cap A'B', C_1 = BC \cap A'B'.</cmath>
| |
− |
| |
− | Prove that the lines <math>A'C', UM_0, A''C'', MV, A_0I,</math> and the tangent to the circumcircle of <math>\triangle ABC</math> at <math>B</math> are concurrent.
| |
− |
| |
− | <i><b>Proof</b></i>
| |
− |
| |
− | 1. Denote <math>AB = c, BC = a, AC = b, \angle BAC = 2 \alpha, \angle ABC = 2 \beta, \angle ACB = 2 \gamma.</math>
| |
− | <math>\overset{\Large\frown} {AB'} = \overset{\Large\frown} {CB'} \implies \angle AC'B' = \angle CC'B'.</math>
| |
− | Similarly <math>\angle AB'C' = \angle BB'C', \angle C'AI = \angle C'IA = \alpha + \gamma \implies B'C'</math> is the bisector of <math>AI.</math>
| |
− | Similarly, <math>A'C'</math> is the bisector of <math>BI, A'B'</math> is the bisector of <math>CI.</math>
| |
− |
| |
− | Therefore <math>AA_0IA_1, BB_0IB_1, CC_0IC_1</math> are rhombus.
| |
− |
| |
− | So triples of points <math>A_0,I,C_1, B_0,I,A_1, C_0,I,B_1</math> are collinear, lines <math>A_0I || AC, B_0I || AB, C_0I || AC.</math>
| |
− | <cmath>\triangle ABC \sim \triangle A_0IB_1 \sim \triangle IB_0C_1 \sim \triangle A_1IC_0.</cmath>
| |
− | It is known that <math>\frac {AI}{IA''} = \frac {b+c}{a}, \frac {BI}{IB''} = \frac {a+c}{b} \implies BB_1 : B_1A_0 : A_0A = a : c : b.</math>
| |
| | | |
− | Similarly, <math>BB_0 : B_0C_1 : C_1C = c : a : b.</math>
| + | Credit to vladimir.shelomovskii@gmail.com, vvsss |
− | | |
− | <math>IC</math> is the bisector <math>\angle A_0IB_1 \implies \frac {A_0C''}{B_1C''} = \frac {AC}{BC} = \frac {b}{a} \implies BB_1 : B_1C'' : C''A_0 : A_0A = a(a + b) : ac : bc : b(a + b).</math>
| |
− | | |
− | Similarly, <math>BB_0 : B_0A'' : A''C_1 : C_1C = c(c + b) : ac : ab : b(c + b).</math>
| |
− | | |
− | Denote <math>D</math> the crosspoint of the tangent to the circumcircle of <math>\triangle ABC</math> at <math>B</math> and <math>A_0I.</math>
| |
− | | |
− | <math>\angle DBI = \angle BCB' = \angle BCA + 2 \overset{\Large\frown} {AB'} = 2 \gamma + \beta = \angle B_1IA_0 + \angle B_1IB = \angle DIB \implies BD = ID.</math>
| |
− | <math>A'C'</math> is the bisector <math>BI \implies D \in A'C'.</math>
| |
− | | |
− | 2. Let us consider the points <math>A'',C'',</math> and <math>D.</math>
| |
− | <cmath>\frac {BB_1} {B_1A_0} = \frac {a}{c}, \frac {B_0C_1} {BB_0} = \frac {a}{c}.</cmath>
| |
− | | |
− | We use Menelaus' Theorem for <math>\triangle BA_0C_1</math> and line <math>DB_1B_0</math> and get <math>\frac {DA_0} {DC_1} = \frac {c^2}{a^2}.</math>
| |
− | <cmath>\frac {BC''}{C''A_0} = \frac {BB_1+B_1C''}{C''A_0} = \frac {a(a+b+c)}{bc}.</cmath>
| |
− | <cmath>\frac {C_1A''}{BA''} = \frac {C_1A''}{BB_0+B_0A''} = \frac {ab}{c(a+b+c)} \implies \frac {BC''}{C''A_0} \cdot \frac {C_1A''}{BA''} = \frac {a^2}{c^2}.</cmath>
| |
− | We use Menelaus' Theorem for <math>\triangle BA_0C_1</math> and get that points <math>A'',C'',</math> and <math>D</math> are collinear.
| |
− | [[File:2024 11 C.png|390px|right]]
| |
− | 3.Let us consider the points <math>U, M_0,</math> and <math>D.</math>
| |
− | <cmath>\frac {AM_0}{B_1M_0} = \frac {2AM_0}{2BM_0 - 2BB_1} = \frac {c}{c - 2 \frac{ac}{a+b+c}} = \frac{a +b + c}{b+c - a}.</cmath>
| |
− | <cmath>\frac {BA_0}{B_1A_0} = \frac {BB_1 + B_1A_0}{B_1A_0} = \frac {a+c}{c},</cmath>
| |
− | <cmath>\frac {C_1B_0}{C_1B} = \frac {C_1B_0}{C_1B_0 + BB_0} = \frac {a}{a + c}.</cmath>
| |
− | We use Menelaus' Theorem for <math>\triangle BB_0B_1</math> and line <math>DA_0B_1</math> and get <cmath>\frac {DB_0} {DB_1} = \frac {a}{c}.</cmath>
| |
− | <cmath>B_1I || BC, \frac {IA'}{A''A'} = \frac{b+c}{a} = \frac{B_1A'}{B_0A'} \implies \frac{DA'}{DB_1} = \frac {ab}{c(b+c-a)}.</cmath>
| |
− | Let <math>F</math> be the midpoint <math>BI, FA' || LU \implies \frac {A'I}{A'U} = \frac {FI}{FL} = \frac {BI}{BB'' - BI} = \frac {BI}{B''I} = \frac{a+c}{b}.</math>
| |
− | <math>\frac {A'U}{UA} = \frac {A'I - IU}{AI + IU} = \frac {\frac {A'I}{IU} - 1}{\frac {AI}{IA'} \cdot \frac {A'I}{IU}+1} = \frac{ab}{c(a+b+c)}.</math>
| |
− | So <math>\frac {AM_0}{B_1M_0} \cdot \frac {A'U}{UA} \cdot \frac{DA'}{DB_1} = 1.</math>
| |
− | | |
− | We use Menelaus' Theorem for <math>\triangle AB_1A'</math> and get that points <math>U, M_0,</math> and <math>D</math> are collinear.
| |
− | | |
− | Similarly points <math>V, M,</math> and <math>D</math> are collinear.
| |
| | | |
− | '''vladimir.shelomovskii@gmail.com, vvsss'''
| + | {{stub}} |
Division of bisector
Let a triangle
be given.
Let
and
be the bisectors of
he segments
and
meet at point
Find
Solution
Similarly
Denote
Bisector
Bisector
Bisectors and tangent
Let a triangle
and it’s circumcircle
be given.
Let segments
and
be the internal and external bisectors of
The tangent to
at
meet
at point
Prove that
a)
b)
c)
Proof
a)
is circumcenter
b)
c)
Proportions for bisectors A
Bisector and circumcircle
Let a triangle
be given.
Let segments
and
be the bisectors of
The lines
and
meet circumcircle
at points
respectively.
Find
Prove that circumcenter
of
lies on
Solution
Incenter
belong the bisector
which is the median of isosceles
Some properties of the angle bisectors
Let a triangle
be given.
Let
be the circumradius, circumcircle, circumcenter, inradius, incircle, and inradius of
respectively.
Let segments
and
be the angle bisectors of
lines
and
meet
at
and
meet
and
at
Let
be the point on tangent to
at point
such, that
Let bisector
line
meet
at point
and
at point
Denote
circumcenter of
- the point where bisector
meet circumcircle of
Prove:
c) lines
and
are concurrent at
Proof
WLOG,
A few preliminary formulas:
a)
b)
is the circumcenter of
c)
are collinear.
are collinear and so on. Using Cheva's theorem we get the result.
Proportions for bisectors
The bisectors
and
of a triangle ABC with
meet at point
Prove
Proof
Denote the angles
and
are concyclic.
The area of the
is
Bisectrix and bisector
Let triangle
be given.
Let
be the incenter,
be the circumcenter,
be the circumcircle of
Let
be the bisector of
Let
be the circumcenter of
Prove that the points
and
are concyclic and
Proof
Denote
the midpoint
It is known that
is the midpoint
(see Bisector and circumcircle)
the homothety centered at point
with ratio
maps
into
and
into
Point
is symmetrical to point
with respect to the line
so radii of
and
are equal.
Denote
the radius of
the radius of
Then
Similarly,
So
Therefore, the homothety centered at point
with ratio
maps quadrangle
into quadrangle
and
into
points
and
are concyclic.
Similarly, points
and
are concyclic. So points
and
are concyclic.
The center
of this circle lyes on radius
of
and
The homothety centered at point
with ratio
maps the point
(midpoint
) into midpoint
so
Corollary
Points
and
are concyclic
Points
and
are concyclic.
Seven lines crossing point
Let
be the incenter, circumcircle, and the midpoints of sides
of a
Let
be the bisectors of a
be the midpoint of
The points
and
be such points that
Denote points
Prove that the lines
and the tangent to the circumcircle of
at
are concurrent.
Proof
1. Denote
Similarly
is the bisector of
Similarly,
is the bisector of
is the bisector of
Therefore
are rhombus.
So triples of points
are collinear, lines
It is known that
Similarly,
is the bisector
Similarly,
Denote
the crosspoint of the tangent to the circumcircle of
at
and
is the bisector
2. Let us consider the points
and
We use Menelaus' Theorem for
and line
and get
We use Menelaus' Theorem for
and get that points
and
are collinear.
3.Let us consider the points
and
We use Menelaus' Theorem for
and line
and get
Let
be the midpoint
So
We use Menelaus' Theorem for
and get that points
and
are collinear.
Similarly points
and
are collinear.
Credit to vladimir.shelomovskii@gmail.com, vvsss
This article is a stub. Help us out by expanding it.