Difference between revisions of "Angle addition identities"
(→Proofs) |
|||
(3 intermediate revisions by one other user not shown) | |||
Line 2: | Line 2: | ||
<math>\sin(x + y) = \sin (x) \cos (y) + \cos (x) \sin (y)</math> | <math>\sin(x + y) = \sin (x) \cos (y) + \cos (x) \sin (y)</math> | ||
+ | |||
<math>\cos(x + y) = \cos (x) \cos (y) - \sin (x) \sin (y)</math> | <math>\cos(x + y) = \cos (x) \cos (y) - \sin (x) \sin (y)</math> | ||
+ | |||
<math>\tan(x + y) = \frac{\tan (x) + \tan (y)}{1 - \tan (x) \tan (y)}</math> | <math>\tan(x + y) = \frac{\tan (x) + \tan (y)}{1 - \tan (x) \tan (y)}</math> | ||
{{stub}} | {{stub}} | ||
+ | |||
+ | ==Proofs== | ||
+ | |||
+ | ==Proof 1== | ||
+ | |||
+ | <asy> | ||
+ | unitsize(216); | ||
+ | real d = 1/cos(radians(35)); | ||
+ | real d1 = d * cos(radians(55)); | ||
+ | real d2 = d * sin(radians(55)); | ||
+ | pair O = (0,0); | ||
+ | pair A = (cos(radians(20)),0); | ||
+ | pair B = (cos(radians(20)),sin(radians(20))); | ||
+ | pair C = (cos(radians(20)),d2); | ||
+ | pair D = (d1,d2); | ||
+ | draw(O--A--B--O--D--B--O--D--C--B); | ||
+ | dot(O); | ||
+ | dot(B); | ||
+ | dot(A,red); | ||
+ | dot(C,green); | ||
+ | dot(D,blue); | ||
+ | label("O",O,SW); | ||
+ | label("$\alpha$",shift(dir(10)/5)*O); | ||
+ | label("$\beta$",shift(dir(37.5)/5)*O); | ||
+ | label("A",A,SE,red); | ||
+ | label("B",B,E); | ||
+ | label("C",C,NE,green); | ||
+ | label("D",D,dir(122.5),blue); | ||
+ | label("$\cos \alpha$",O--A,S); | ||
+ | label("$\sin \alpha$",A--B,E); | ||
+ | label("1",O--B,dir(302.5)); | ||
+ | label("$\frac{\cos \alpha \sin \beta}{\cos \beta}$",B--C,E); | ||
+ | label("$\frac{\sin \alpha \sin \beta}{\cos \beta}$",C--D,N); | ||
+ | label("$\frac{\sin \beta}{\cos \beta}$",B--D,dir(200)); | ||
+ | label("$\frac{1}{\cos \beta}$",D--O,dir(325)); | ||
+ | </asy> | ||
+ | |||
+ | <math>\fontsize{18}{27}\selectfont \sin (\alpha + \beta ) = \frac{\left( \sin \alpha + \frac{\cos \alpha \sin \beta}{\cos \beta} \right)}{\frac{1}{\cos \beta}} = \cos \beta \times \left( \sin \alpha + \frac{\cos \alpha \sin \beta}{\cos \beta} \right) = \sin \alpha \cos \beta + \cos \alpha \sin \beta</math> | ||
+ | |||
+ | <math>\fontsize{18}{27}\selectfont \cos (\alpha + \beta ) = \frac{\left( \cos \alpha - \frac{\sin \alpha \sin \beta}{\cos \beta} \right)}{\frac{1}{\cos \beta}} = \cos \beta \times \left( \cos \alpha - \frac{\sin \alpha \sin \beta}{\cos \beta} \right) = \cos \alpha \cos \beta - \sin \alpha \sin \beta</math> | ||
+ | |||
+ | <math>\fontsize{18}{27}\selectfont \tan (\alpha + \beta ) = \frac{\sin (\alpha + \beta )}{\cos (\alpha + \beta )} = \frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta} = \frac{\frac{\sin \alpha \cos \beta + \cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta - \sin \alpha \sin \beta}{\cos \alpha \cos \beta}} = \frac{\frac{\sin \alpha}{\cos \alpha} + \frac{\sin \beta}{\cos \beta}}{1 - \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}</math> | ||
+ | |||
+ | ==Proof 2== | ||
+ | |||
+ | Let point <math>A(\cos\alpha, \sin\alpha)</math> and point <math>B(\cos\beta, \sin\beta)</math> be two points on the unit circle such that <math>\alpha > \beta</math>. | ||
+ | |||
+ | By the law of cosine, we know that: | ||
+ | |||
+ | <cmath>\cos (\alpha - \beta) = \cos \angle AOB = \frac{1^2+1^2-\vert AB \vert^2}{2 \cdot 1 \cdot 1}</cmath> | ||
+ | |||
+ | Apply the distance formula to obtain the length of <math>AB</math>: | ||
+ | |||
+ | \begin{align*} | ||
+ | \vert AB \vert &= \sqrt{(\cos\alpha - \cos\beta)^2 + (\sin\alpha - \sin\beta)^2} \\ | ||
+ | &= \sqrt{(\cos^2\alpha + \sin^2\alpha) + (\cos^2\beta + \sin^2\beta) - 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta} \\ | ||
+ | &= \sqrt{2-2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta} | ||
+ | \end{align*} | ||
+ | |||
+ | Substituting and rearranging to get: | ||
+ | |||
+ | <cmath>\cos (\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta</cmath> | ||
+ | |||
+ | See that the identity holds true (and makes sense geometrically) when <math>\alpha < \beta</math> due to the fact that <math>\cos{(\beta - \alpha)} = \cos{(\alpha - \beta)}</math>. | ||
+ | |||
+ | Then, let <math>\theta = -\beta</math> and substitute it into the identity and the angle addition identity for cosine follows. | ||
+ | |||
+ | ~[[User:Bloggish|Bloggish]] | ||
==See Also== | ==See Also== | ||
* [[Trigonometric identities]] | * [[Trigonometric identities]] |
Latest revision as of 10:05, 18 March 2025
The trigonometric angle addition identities state the following identities:
This article is a stub. Help us out by expanding it.
Contents
Proofs
Proof 1
Proof 2
Let point and point
be two points on the unit circle such that
.
By the law of cosine, we know that:
Apply the distance formula to obtain the length of :
\begin{align*} \vert AB \vert &= \sqrt{(\cos\alpha - \cos\beta)^2 + (\sin\alpha - \sin\beta)^2} \\ &= \sqrt{(\cos^2\alpha + \sin^2\alpha) + (\cos^2\beta + \sin^2\beta) - 2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta} \\ &= \sqrt{2-2\cos\alpha\cos\beta - 2\sin\alpha\sin\beta} \end{align*}
Substituting and rearranging to get:
See that the identity holds true (and makes sense geometrically) when due to the fact that
.
Then, let and substitute it into the identity and the angle addition identity for cosine follows.