Difference between revisions of "2001 SMT/Algebra Problems/Problem 5"

(Created page with "==Problem== Let <math>f \colon \mathbb{N} \to \mathbb{N}</math> be defined by <math>f(n) =\begin{cases}2 & \text{if }x = 0, \\(f(x-1))^2 & \text{if }x \neq 0 \end{cases}</ma...")
 
m
 
Line 3: Line 3:
  
 
==Solution==
 
==Solution==
Notice that each time we increase <math>x</math> by <math>1</math> starting fro <math>0</math>, we square some power of <math>2</math>. By playing around with the recursion, we can come up with an explicit formula <math>f(x)=2^{2^x}</math>. Then <math>f(11)=2^{2^11}=2^2048</math>, so <math>\log_2f(11)=\boxed{2048}</math>.
+
Notice that each time we increase <math>x</math> by <math>1</math> starting fro <math>0</math>, we square some power of <math>2</math>. By playing around with the recursion, we can come up with an explicit formula <math>f(x)=2^{2^x}</math>. Then <math>f(11)=2^{2^{11}}=2^{2048}</math>, so <math>\log_2f(11)=\boxed{2048}</math>.
  
 
~ [https://artofproblemsolving.com/wiki/index.php/User:Eevee9406 eevee9406]
 
~ [https://artofproblemsolving.com/wiki/index.php/User:Eevee9406 eevee9406]

Latest revision as of 21:02, 19 March 2025

Problem

Let $f \colon \mathbb{N} \to \mathbb{N}$ be defined by $f(n) =\begin{cases}2 &  \text{if }x = 0, \\(f(x-1))^2 &  \text{if }x \neq 0 \end{cases}$. What is $\log_2f(11)$?

Solution

Notice that each time we increase $x$ by $1$ starting fro $0$, we square some power of $2$. By playing around with the recursion, we can come up with an explicit formula $f(x)=2^{2^x}$. Then $f(11)=2^{2^{11}}=2^{2048}$, so $\log_2f(11)=\boxed{2048}$.

~ eevee9406