Difference between revisions of "1956 AHSME Problems/Problem 20"

m
Line 10: Line 10:
  
 
==See also==
 
==See also==
{{AHSME box|year=1956|num-b=19|num-a=21}}
+
{{AHSME 50p box|year=1956|num-b=19|num-a=21}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:23, 19 March 2025

If $(0.2)^x = 2$ and $\log 2 = 0.3010$, then the value of $x$ to the nearest tenth is:

$\textbf{(A)}\ - 10.0 \qquad\textbf{(B)}\ - 0.5 \qquad\textbf{(C)}\ - 0.4 \qquad\textbf{(D)}\ - 0.2 \qquad\textbf{(E)}\ 10.0$

Solution

Taking reciprocals of the first condition yields $5^x=\frac{1}{2}$. Then $5^x\cdot2^x=\frac{1}{2}\cdot2^x$, so $10^x=2^{x-1}$. Taking base $10$ log of both sides results in $x=(x-1)\log 2$, so \[x=\frac{\log2}{\log2-1}\approx{0.3}{-0.7}=-\frac{3}{7}\approx-0.429\] Thus $\boxed{\textbf{(D)}}$ is correct.

~ eevee9406

See also

1956 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png