Difference between revisions of "1988 OIM Problems/Problem 1"

(Solution)
(solution)
 
(One intermediate revision by one other user not shown)
Line 4: Line 4:
 
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
 
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
  
== Solution 1 ==
+
==Solution==
{{Step 1: Let the sides of the triangle be  
+
Let the sides be <math>a,a+d_1,a+2d_1</math>, let the heights be <math>b,b-d_2,b-2d_2</math>, and assume for the sake of contradiction that <math>d_1,d_2</math> are both positive. Then, since longer heights must correspond to shorter bases (since multiplying yields equal areas) we must have <math>a</math> correspond to <math>b</math>, <math>a+d_1</math> correspond to <math>b-d_2</math>, and <math>a+2d_1</math> correspond to <math>b-2d_2</math>. Then, by triangle areas:
a
+
<cmath>ab=(a+d_1)(b-d_2)=(a+2d_1)(b-2d_2)</cmath>
a,  
+
From the first equality, we find that <math>bd_1=ad_2+d_1d_2</math>. From the equality <math>ab=(a+2d_1)(b-2d_2)</math>, we derive <math>bd_1=ad_2+2d_1d_2</math>. Substituting the first equation into the second results in
b
+
<cmath>ad_2+d_1d_2=ad_2+2d_1d_2</cmath>
b, and
+
so <math>d_1d_2=0</math>. But if only one of <math>d_1</math> and <math>d_2</math> is zero, then different heights (or bases) will correspond to the same base (or height), resulting in the same area, which is impossible. Thus <math>d_1=d_2=0</math>, and the conclusion follows.
c
 
c.
 
Since the sides are in arithmetic progression, we can represent them as:
 
  
b
+
~ [https://artofproblemsolving.com/wiki/index.php/User:Eevee9406 eevee9406]
=
 
a
 
+
 
c
 
2
 
.
 
b=
 
2
 
a+c
 
 
.
 
So, the three sides are
 
a
 
a,
 
b
 
=
 
a
 
+
 
c
 
2
 
b=
 
2
 
a+c
 
 
, and
 
c
 
c, where
 
a
 
a and
 
c
 
c are the first and third terms of the arithmetic progression.
 
 
 
Step 2: Let the heights corresponding to these sides be
 
h
 
a
 
h
 
a
 
 
,
 
h
 
b
 
h
 
b
 
 
, and
 
h
 
c
 
h
 
c
 
 
.
 
We are also given that the heights are in arithmetic progression. So, we can represent the heights as:
 
 
 
h
 
b
 
=
 
h
 
a
 
+
 
h
 
c
 
2
 
.
 
h
 
b
 
 
=
 
2
 
h
 
a
 
 
+h
 
c
 
 
 
 
.
 
Step 3: Use the formula for the area of the triangle.
 
The area
 
A
 
A of a triangle can be expressed using any side and the corresponding height:
 
 
 
A
 
=
 
1
 
2
 
×
 
side
 
×
 
corresponding height
 
.
 
A=
 
2
 
1
 
 
×side×corresponding height.
 
Thus, we have the following three expressions for the area of the triangle:
 
 
 
A
 
=
 
1
 
2
 
a
 
h
 
a
 
=
 
1
 
2
 
b
 
h
 
b
 
=
 
1
 
2
 
c
 
h
 
c
 
.
 
A=
 
2
 
1
 
 
ah
 
a
 
 
=
 
2
 
1
 
 
bh
 
b
 
 
=
 
2
 
1
 
 
ch
 
c
 
 
.
 
From these, we can express the heights in terms of the area and the side lengths:
 
 
 
h
 
a
 
=
 
2
 
A
 
a
 
,
 
h
 
b
 
=
 
2
 
A
 
b
 
,
 
h
 
c
 
=
 
2
 
A
 
c
 
.
 
h
 
a
 
 
=
 
a
 
2A
 
 
,h
 
b
 
 
=
 
b
 
2A
 
 
,h
 
c
 
 
=
 
c
 
2A
 
 
.
 
Step 4: Use the fact that the heights are in arithmetic progression.
 
Since the heights are in arithmetic progression, we know that:
 
 
 
h
 
b
 
=
 
h
 
a
 
+
 
h
 
c
 
2
 
.
 
h
 
b
 
 
=
 
2
 
h
 
a
 
 
+h
 
c
 
 
 
 
.
 
Substitute the expressions for
 
h
 
a
 
h
 
a
 
 
,
 
h
 
b
 
h
 
b
 
 
, and
 
h
 
c
 
h
 
c
 
 
  into this equation:
 
 
 
2
 
A
 
b
 
=
 
2
 
A
 
a
 
+
 
2
 
A
 
c
 
2
 
.
 
b
 
2A
 
 
=
 
2
 
a
 
2A
 
 
+
 
c
 
2A
 
 
 
 
.
 
Simplify both sides:
 
 
 
2
 
A
 
b
 
=
 
2
 
A
 
2
 
(
 
1
 
a
 
+
 
1
 
c
 
)
 
=
 
A
 
(
 
1
 
a
 
+
 
1
 
c
 
)
 
.
 
b
 
2A
 
 
=
 
2
 
2A
 
 
(
 
a
 
1
 
 
+
 
c
 
1
 
 
)=A(
 
a
 
1
 
 
+
 
c
 
1
 
 
).
 
Canceling
 
A
 
A from both sides (assuming
 
A
 
 
0
 
A
 
 
=0):
 
 
 
2
 
b
 
=
 
1
 
a
 
+
 
1
 
c
 
.
 
b
 
2
 
 
=
 
a
 
1
 
 
+
 
c
 
1
 
 
.
 
Step 5: Substitute the relation
 
b
 
=
 
a
 
+
 
c
 
2
 
b=
 
2
 
a+c
 
 
.
 
We know that
 
b
 
=
 
a
 
+
 
c
 
2
 
b=
 
2
 
a+c
 
 
. Substituting this into the equation above:
 
 
 
2
 
a
 
+
 
c
 
2
 
=
 
1
 
a
 
+
 
1
 
c
 
.
 
2
 
a+c
 
 
 
2
 
 
=
 
a
 
1
 
 
+
 
c
 
1
 
 
.
 
Simplifying the left-hand side:
 
 
 
4
 
a
 
+
 
c
 
=
 
1
 
a
 
+
 
1
 
c
 
.
 
a+c
 
4
 
 
=
 
a
 
1
 
 
+
 
c
 
1
 
 
.
 
Now, combine the terms on the right-hand side:
 
 
 
1
 
a
 
+
 
1
 
c
 
=
 
a
 
+
 
c
 
a
 
c
 
.
 
a
 
1
 
 
+
 
c
 
1
 
 
=
 
ac
 
a+c
 
 
.
 
Thus, the equation becomes:
 
 
 
4
 
a
 
+
 
c
 
=
 
a
 
+
 
c
 
a
 
c
 
.
 
a+c
 
4
 
 
=
 
ac
 
a+c
 
 
.
 
Step 6: Cross-multiply to simplify.
 
Cross-multiply to eliminate the fractions:
 
 
 
4
 
a
 
c
 
=
 
(
 
a
 
+
 
c
 
)
 
2
 
.
 
4ac=(a+c)
 
2
 
.
 
Expanding both sides:
 
 
 
4
 
a
 
c
 
=
 
a
 
2
 
+
 
2
 
a
 
c
 
+
 
c
 
2
 
.
 
4ac=a
 
2
 
+2ac+c
 
2
 
.
 
Rearrange the terms:
 
 
 
4
 
a
 
c
 
 
2
 
a
 
c
 
=
 
a
 
2
 
+
 
c
 
2
 
,
 
4ac−2ac=a
 
2
 
+c
 
2
 
,
 
2
 
a
 
c
 
=
 
a
 
2
 
+
 
c
 
2
 
.
 
2ac=a
 
2
 
+c
 
2
 
.
 
Step 7: Recognize the equation.
 
We now have the equation:
 
 
 
2
 
a
 
c
 
=
 
a
 
2
 
+
 
c
 
2
 
.
 
2ac=a
 
2
 
+c
 
2
 
.
 
This is a well-known equation that holds if and only if
 
a
 
=
 
c
 
a=c, meaning the triangle is isosceles with
 
a
 
=
 
c
 
a=c.
 
 
 
Step 8: Conclude that the triangle is equilateral.
 
If
 
a
 
=
 
c
 
a=c, then from the relation
 
b
 
=
 
a
 
+
 
c
 
2
 
b=
 
2
 
a+c
 
 
, we see that
 
b
 
=
 
a
 
=
 
c
 
b=a=c. Therefore, all three sides of the triangle are equal, which means the triangle is equilateral.
 
 
 
Conclusion:
 
We have shown that if the sides and the heights of a triangle are both in arithmetic progression, the triangle must be equilateral.}}
 
  
 
== See also ==
 
== See also ==
 
https://www.oma.org.ar/enunciados/ibe3.htm
 
https://www.oma.org.ar/enunciados/ibe3.htm

Latest revision as of 23:28, 19 March 2025

Problem

The measurements of the sides of a triangle are in arithmetic progression and the lengths of the heights of the same triangle are also in arithmetic progression. Prove that the triangle is equilateral.

~translated into English by Tomas Diaz. ~orders@tomasdiaz.com

Solution

Let the sides be $a,a+d_1,a+2d_1$, let the heights be $b,b-d_2,b-2d_2$, and assume for the sake of contradiction that $d_1,d_2$ are both positive. Then, since longer heights must correspond to shorter bases (since multiplying yields equal areas) we must have $a$ correspond to $b$, $a+d_1$ correspond to $b-d_2$, and $a+2d_1$ correspond to $b-2d_2$. Then, by triangle areas: \[ab=(a+d_1)(b-d_2)=(a+2d_1)(b-2d_2)\] From the first equality, we find that $bd_1=ad_2+d_1d_2$. From the equality $ab=(a+2d_1)(b-2d_2)$, we derive $bd_1=ad_2+2d_1d_2$. Substituting the first equation into the second results in \[ad_2+d_1d_2=ad_2+2d_1d_2\] so $d_1d_2=0$. But if only one of $d_1$ and $d_2$ is zero, then different heights (or bases) will correspond to the same base (or height), resulting in the same area, which is impossible. Thus $d_1=d_2=0$, and the conclusion follows.

~ eevee9406

See also

https://www.oma.org.ar/enunciados/ibe3.htm