Difference between revisions of "2024 AMC 10A Problems/Problem 24"

Line 11: Line 11:
 
Thus, <math>29 \mid \varphi(p) = p - 1</math>, so the only possible prime is <math>59</math>, and the sum of the digits is <math>\boxed{\textbf{(D)}~14}</math>.
 
Thus, <math>29 \mid \varphi(p) = p - 1</math>, so the only possible prime is <math>59</math>, and the sum of the digits is <math>\boxed{\textbf{(D)}~14}</math>.
  
Note that <math>\frac{4^{28} - 15}{59} = \cdot 1{,}221{,}315{,}153{,}185{,}219</math> and <math>\frac{3^{28} - 20}{59} = 387{,}742{,}244{,}999</math>.
+
Note that <math>\frac{4^{28} - 15}{59} = 1{,}221{,}315{,}153{,}185{,}219</math> and <math>\frac{3^{28} - 20}{59} = 387{,}742{,}244{,}999</math>.
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2024|ab=A|num-b=23|num-a=25}}
 
{{AMC10 box|year=2024|ab=A|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:29, 20 March 2025

Problem

There exists a unique two-digit prime number $p$ such that both $4^{28} - 15$ and $3^{28} - 20$ are divisible by $p$. What is the sum of the digits of $p$?

$\textbf{(A)}~10\qquad\textbf{(B)}~11\qquad\textbf{(C)}~13\qquad\textbf{(D)}~14\qquad\textbf{(E)}~16$

Solution

Let $k$ be the residue such that $k \equiv \tfrac{4}{3} \pmod{p}$. Note that $4^{28} \equiv 15 \pmod{p}$ and $3^{28} \equiv 20 \pmod{p}$. Dividing yields

\[k^{28} = k^{-1} \pmod{p} \implies k^{29} \equiv 1 \pmod{p}.\]

Thus, $29 \mid \varphi(p) = p - 1$, so the only possible prime is $59$, and the sum of the digits is $\boxed{\textbf{(D)}~14}$.

Note that $\frac{4^{28} - 15}{59} = 1{,}221{,}315{,}153{,}185{,}219$ and $\frac{3^{28} - 20}{59} = 387{,}742{,}244{,}999$.

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png