|
(Tags: New redirect, Undo) |
Line 1: |
Line 1: |
− | {{duplicate|[[2024 AMC 12A Problems/Problem 14|2024 AMC 12A #14]] and [[2024 AMC 10A Problems/Problem 18|2024 AMC 10A #18]]}}
| + | #redirect[[2024 AMC 10A Problems/Problem 21]] |
− | | |
− | ==Problem==
| |
− | Points <math>X</math> and <math>Y</math> lie on sides <math>\overline{BC}</math> and <math>\overline{CD}</math>, respectively, of parallelogram <math>ABCD</math> such that <math>\angle AXC = \angle AYC = 90^{\circ}</math>. Suppose <math>BX = 5</math> and <math>DY = 3</math>, as shown. If <math>ABCD</math> has perimeter <math>48</math>, what is its area?
| |
− | | |
− | <asy>
| |
− | import olympiad; import graph;
| |
− | size(8cm);
| |
− | real labelscalefactor = 0.5; /* changes label-to-point distance */
| |
− | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
| |
− | pen dotstyle = black; /* point style */
| |
− | pair A = (0, 0), B = (15, 0), C = (12, -6 * sqrt(2)), D = (-3, -6 * sqrt(2));
| |
− | pair X = (15 - 3 * 5/9, -6 * sqrt(2) * 5 / 9);
| |
− | pair Y = (0, -6 * sqrt(2));
| |
− | dot(A); dot(B); dot(C); dot(D); dot(X); dot(Y);
| |
− | draw(A--B--C--D--cycle);
| |
− | draw(A--X); draw(A--Y);
| |
− | draw(rightanglemark(A,X,C,15)); draw(rightanglemark(A,Y,C,15));
| |
− | label("$A$", A, N * 1.5);
| |
− | label("$B$", B, N * 1.5);
| |
− | label("$C$", C, S * 1.5);
| |
− | label("$D$", D, S * 1.5);
| |
− | label("$X$", X, E * 1.5);
| |
− | label("$Y$", Y, S * 1.5);
| |
− | label("$3$", midpoint(D--Y), S * 1.5);
| |
− | label("$5$", midpoint(B--X), E * 1.5);
| |
− | </asy>
| |
− | | |
− | <math>\textbf{(A)}~40\sqrt{5}\qquad\textbf{(B)}~56\sqrt{3}\qquad\textbf{(C)}~48\sqrt{7}\qquad\textbf{(D)}~90\sqrt{2}\qquad\textbf{(E)}~60\sqrt{5}</math>
| |
− | | |
− | ==Solution==
| |
− | Note that opposite angles in a parallelogram are equal, so <math>\angle ADY = \angle ABX</math>. Also, <math>\angle AYD = \angle AXB = 90^{\circ}</math>, so <math>\triangle AYD \sim \triangle AXB</math>. The ratio of similarity of these triangles is <math>\tfrac{AB}{AD} = \tfrac{BX}{DY} = \tfrac{5}{3}</math>, so let <math>AB = 5x</math> and <math>AD = 3x</math>. The perimeter of <math>ABCD</math> is <math>5x + 3x + 5x + 3x = 16x = 48</math>, so <math>x = 3</math>. Therefore <math>AD = 3 \cdot 3 = 9</math>, <math>AB = 5 \cdot 3 = 15</math>, and the area of <math>ABCD</math> is <math>AY \cdot AB = \sqrt{9^{2} - 3^{2}} \cdot 15 = \sqrt{72} \cdot 15 = 6\sqrt{2} \cdot 15 = \boxed{\textbf{(D)}~90\sqrt{2}}</math>.
| |
− | | |
− | ==See also==
| |
− | {{AMC12 box|year=2024|ab=A|num-b=13|num-a=15}}
| |
− | {{AMC10 box|year=2024|ab=A|num-b=17|num-a=19}}
| |
− | {{MAA Notice}}
| |