|
(Tags: New redirect, Undo) |
Line 1: |
Line 1: |
− | {{duplicate|[[2024 AMC 12A Problems/Problem 2|2024 AMC 12A #2]] and [[2024 AMC 10A Problems/Problem 2|2024 AMC 10A #2]]}}
| + | #redirect[[2024 AMC 10A Problems/Problem 2]] |
− | | |
− | ==Problem==
| |
− | Define <math>\blacktriangledown(a) = \sqrt{a - 1}</math> and <math>\blacktriangle(a) = \sqrt{a + 1}</math> for all real numbers <math>a</math>. What is the value of <cmath>\frac{\blacktriangledown(20 + \blacktriangle(2024))}{\blacktriangledown(\blacktriangle(24))}~?</cmath>
| |
− | | |
− | <math>\textbf{(A)}~ 1 \qquad \textbf{(B)}~ 2 \qquad \textbf{(C)}~ 4 \qquad \textbf{(D)}~ 8 \qquad \textbf{(E)}~ 16</math>
| |
− | | |
− | ==Solution==
| |
− | The value of the expression is <cmath>\frac{\sqrt{20+\sqrt{2024+1}-1}}{\sqrt{\sqrt{24+1}-1}}=\frac{\sqrt{20+\sqrt{2025}-1}}{\sqrt{\sqrt{25}-1}}=\frac{\sqrt{20+45-1}}{\sqrt{5-1}}=\frac{\sqrt{64}}{\sqrt{4}}=\frac{8}{2}=\boxed{\textbf{(C)}~4}.</cmath>
| |
− | | |
− | ==See also==
| |
− | {{AMC12 box|year=2024|ab=A|num-b=1|num-a=3}}
| |
− | {{AMC10 box|year=2024|ab=A|num-b=1|num-a=3}}
| |
− | {{MAA Notice}}
| |