Difference between revisions of "1988 OIM Problems/Problem 4"
(solution) |
|||
(One intermediate revision by one other user not shown) | |||
Line 3: | Line 3: | ||
Prove that <math>\frac{S}{a^2+b^2+c^2}</math> is rational. | Prove that <math>\frac{S}{a^2+b^2+c^2}</math> is rational. | ||
+ | |||
+ | ~translated into English by Tomas Diaz. ~orders@tomasdiaz.com | ||
== Solution == | == Solution == | ||
− | {{ | + | Drop a perpendicular from <math>A</math> onto <math>BC</math>, and let the foot be <math>M_a</math>. Let <math>p_a=BM_a</math> and <math>q_a=CM_a</math> (so <math>p_a+q_a=a</math>), and define similar values for <math>B</math> and <math>C</math>. Furthermore, let <math>S_a</math> represent the contributions of the distances from <math>A</math> to the opposite side and <math>S_b</math> and <math>S_c</math> similarly; thus <math>S=S_a+S_b+S_c</math>. |
+ | |||
+ | Notice that each segment on <math>BC</math> has length <math>\frac{a}{n}</math>; let <math>h_a</math> be the length of the altitude from <math>A</math> (so <math>h_a^2+p_a^2=b^2</math> and <math>h_a^2+q_a^2=c^2</math> by the [[Pythagorean Theorem]]). Then, by multiple uses of the Pythagorean Theorem: | ||
+ | \begin{align*} | ||
+ | S_a&=\left(h_a^2+\left(p_a-\frac{a}{n}\right)^2\right)+ \left(h_a^2+\left(p_a-\frac{2a}{n}\right)^2\right)+\cdots+ \left(h_a^2+\left(p_a-\frac{a(n-1)}{n}\right)^2\right)\\ | ||
+ | &=(n-1)h_a^2+\sum_{i=1}^{n-1}\left(p_a-\frac{ia}{n}\right)^2\\ | ||
+ | \end{align*} | ||
+ | But notice that, due to symmetry, we can substitute <math>q_a</math> in place of <math>p_a</math> and yield the same result. Therefore, | ||
+ | \begin{align*} | ||
+ | S_a&=\frac{1}{2}S_a+\frac{1}{2}S_a\\ | ||
+ | &=\frac{1}{2}\left((n-1)h_a^2+\sum_{i=1}^{n-1}\left(p_a-\frac{ia}{n}\right)^2\right)+\frac{1}{2}\left((n-1)h_a^2+\sum_{i=1}^{n-1}\left(q_a-\frac{ia}{n}\right)^2\right)\\ | ||
+ | &=(n-1)h_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(\left(p_a-\frac{ia}{n}\right)^2+\left(q_a-\frac{ia}{n}\right)^2\right)\\ | ||
+ | &=(n-1)h_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(p_a^2-\frac{2iap_a}{n}+\frac{i^2a^2}{n^2}+q_a^2-\frac{2iaq_a}{n}+\frac{i^2a^2}{n^2}\right)\\ | ||
+ | &=\frac{1}{2}(n-1)h_a^2+\frac{1}{2}(n-1)p_a^2+\frac{1}{2}(n-1)h_a^2+\frac{1}{2}(n-1)q_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(\frac{2i^2a^2}{n^2}-\frac{2ia(p_a+q_a)}{n}\right)\\ | ||
+ | &=\frac{1}{2}(n-1)(b^2+c^2)+\frac{1}{2}\sum_{i=1}^{n-1}\left(\frac{2i^2a^2}{n^2}-\frac{2ia^2}{n}\right)\\ | ||
+ | &=\frac{1}{2}(n-1)(b^2+c^2)+a^2\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)\\ | ||
+ | \end{align*} | ||
+ | We can similarly find <math>S_b</math> and <math>S_c</math>. Then, | ||
+ | \begin{align*} | ||
+ | S&=S_a+S_b+S_c\\ | ||
+ | &=(n-1)(a^2+b^2+c^2)+(a^2+b^2+c^2)\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)\\ | ||
+ | \end{align*} | ||
+ | Thus, | ||
+ | <cmath>\frac{S}{a^2+b^2+c^2}=n-1+\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)</cmath> | ||
+ | which is rational. | ||
+ | |||
+ | ~eevee9406 | ||
+ | |||
+ | == See also == | ||
+ | https://www.oma.org.ar/enunciados/ibe3.htm |
Latest revision as of 01:53, 26 March 2025
Problem
Let be a triangle which sides are
,
,
. We divide each side of the triangle in
equal segments. Let
be the sum of the squares of the distances from each vertex to each of the points dividing the opposite side different from the vertices.
Prove that is rational.
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
Solution
Drop a perpendicular from onto
, and let the foot be
. Let
and
(so
), and define similar values for
and
. Furthermore, let
represent the contributions of the distances from
to the opposite side and
and
similarly; thus
.
Notice that each segment on has length
; let
be the length of the altitude from
(so
and
by the Pythagorean Theorem). Then, by multiple uses of the Pythagorean Theorem:
\begin{align*}
S_a&=\left(h_a^2+\left(p_a-\frac{a}{n}\right)^2\right)+ \left(h_a^2+\left(p_a-\frac{2a}{n}\right)^2\right)+\cdots+ \left(h_a^2+\left(p_a-\frac{a(n-1)}{n}\right)^2\right)\\
&=(n-1)h_a^2+\sum_{i=1}^{n-1}\left(p_a-\frac{ia}{n}\right)^2\\
\end{align*}
But notice that, due to symmetry, we can substitute
in place of
and yield the same result. Therefore,
\begin{align*}
S_a&=\frac{1}{2}S_a+\frac{1}{2}S_a\\
&=\frac{1}{2}\left((n-1)h_a^2+\sum_{i=1}^{n-1}\left(p_a-\frac{ia}{n}\right)^2\right)+\frac{1}{2}\left((n-1)h_a^2+\sum_{i=1}^{n-1}\left(q_a-\frac{ia}{n}\right)^2\right)\\
&=(n-1)h_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(\left(p_a-\frac{ia}{n}\right)^2+\left(q_a-\frac{ia}{n}\right)^2\right)\\
&=(n-1)h_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(p_a^2-\frac{2iap_a}{n}+\frac{i^2a^2}{n^2}+q_a^2-\frac{2iaq_a}{n}+\frac{i^2a^2}{n^2}\right)\\
&=\frac{1}{2}(n-1)h_a^2+\frac{1}{2}(n-1)p_a^2+\frac{1}{2}(n-1)h_a^2+\frac{1}{2}(n-1)q_a^2+\frac{1}{2}\sum_{i=1}^{n-1}\left(\frac{2i^2a^2}{n^2}-\frac{2ia(p_a+q_a)}{n}\right)\\
&=\frac{1}{2}(n-1)(b^2+c^2)+\frac{1}{2}\sum_{i=1}^{n-1}\left(\frac{2i^2a^2}{n^2}-\frac{2ia^2}{n}\right)\\
&=\frac{1}{2}(n-1)(b^2+c^2)+a^2\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)\\
\end{align*}
We can similarly find
and
. Then,
\begin{align*}
S&=S_a+S_b+S_c\\
&=(n-1)(a^2+b^2+c^2)+(a^2+b^2+c^2)\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)\\
\end{align*}
Thus,
which is rational.
~eevee9406