Difference between revisions of "2006 AMC 10A Problems/Problem 6"

(Problem)
 
(3 intermediate revisions by 3 users not shown)
Line 4: Line 4:
 
<math> \textbf{(A) } \frac17\qquad \textbf{(B) } \frac27\qquad \textbf{(C) } 1\qquad \textbf{(D) } 7\qquad \textbf{(E) } 14 </math>
 
<math> \textbf{(A) } \frac17\qquad \textbf{(B) } \frac27\qquad \textbf{(C) } 1\qquad \textbf{(D) } 7\qquad \textbf{(E) } 14 </math>
  
== Solution ==
+
== Solution==
 
Taking the seventh root of both sides, we get <math>(7x)^2=14x</math>.
 
Taking the seventh root of both sides, we get <math>(7x)^2=14x</math>.
  
Simplifying the LHS gives <math>49x^2=14x</math>, which then simplifies to <math>7x=2</math>.
+
Simplifying the LHS gives <math>49x^2=14x</math>. This means that <math>7x = 2</math>, or <math>x = 0</math>.
  
Thus, <math>x=\frac{2}{7}</math>, and the answer is <math>\mathrm{(B)}</math>.
+
However, <math>x</math> must be a non-zero value.
  
 +
Thus, <math>x=\boxed{\textbf{(B) }\frac{2}{7}}</math>.
 
== See also ==
 
== See also ==
 
{{AMC10 box|year=2006|ab=A|num-b=5|num-a=7}}
 
{{AMC10 box|year=2006|ab=A|num-b=5|num-a=7}}

Latest revision as of 20:22, 14 April 2025

Problem

What non-zero real value for $x$ satisfies $(7x)^{14}=(14x)^7$?

$\textbf{(A) } \frac17\qquad \textbf{(B) } \frac27\qquad \textbf{(C) } 1\qquad \textbf{(D) } 7\qquad \textbf{(E) } 14$

Solution

Taking the seventh root of both sides, we get $(7x)^2=14x$.

Simplifying the LHS gives $49x^2=14x$. This means that $7x = 2$, or $x = 0$.

However, $x$ must be a non-zero value.

Thus, $x=\boxed{\textbf{(B) }\frac{2}{7}}$.

See also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png