Difference between revisions of "1998 CEMC Gauss (Grade 7) Problems/Problem 1"

(Created page with "The value of <math>\frac{1998-998}{1000}</math> is <math> \text{ (A) }\ 1\qquad\text{ (B) }\ 1000\qquad\text{ (C) }\ 0.1\qquad\text{ (D) }\ 10\qquad\text{ (E) }\ 0.001 </math>")
 
 
Line 2: Line 2:
  
 
<math>  \text{ (A) }\  1\qquad\text{ (B) }\ 1000\qquad\text{ (C) }\ 0.1\qquad\text{ (D) }\ 10\qquad\text{ (E) }\ 0.001 </math>
 
<math>  \text{ (A) }\  1\qquad\text{ (B) }\ 1000\qquad\text{ (C) }\ 0.1\qquad\text{ (D) }\ 10\qquad\text{ (E) }\ 0.001 </math>
 +
==Solution 1==
 +
<math>\frac{1998-998}{1000} = \frac{1000}{1000} = \boxed{\textbf{(A) }1}</math>
 +
 +
~anabel.disher
 +
==Solution 2==
 +
<math>\frac{1998-998}{1000} = \frac{1998}{1000} - \frac{998}{1000} = 1.998 - 0.998 = \boxed{\textbf{(A) }1}</math>
 +
 +
~anabel.disher

Latest revision as of 20:56, 14 April 2025

The value of $\frac{1998-998}{1000}$ is

$\text{ (A) }\  1\qquad\text{ (B) }\ 1000\qquad\text{ (C) }\ 0.1\qquad\text{ (D) }\ 10\qquad\text{ (E) }\ 0.001$

Solution 1

$\frac{1998-998}{1000} = \frac{1000}{1000} = \boxed{\textbf{(A) }1}$

~anabel.disher

Solution 2

$\frac{1998-998}{1000} = \frac{1998}{1000} - \frac{998}{1000} = 1.998 - 0.998 = \boxed{\textbf{(A) }1}$

~anabel.disher