Difference between revisions of "2024 AMC 12B Problems/Problem 19"
(Add diagram for Solution 3) |
m (→Solution 3 (No Trig Manipulations)) |
||
Line 131: | Line 131: | ||
</asy> | </asy> | ||
− | Let the circumcenter of the circle inscribing this polygon be <math>O</math>. The area of the equilateral triangle is <math>\frac{\sqrt{3}}{4}*196=49\sqrt{3}</math>. The area of one of the three smaller triangles, say <math>\triangle{DBE}</math> is <math>14\sqrt{3}</math>. Let <math>BH</math> be the altitude of <math>\triangle{DBE}</math>, so if we extend <math>BH</math> to point <math>M</math> where <math>MO\perp{BM}</math>, we get right triangle <math>\triangle{OMB}</math>. Note that the height <math>BH=2\sqrt{3}</math>, computed given the area and side length <math>14</math>, so <math>MB= | + | Let the circumcenter of the circle inscribing this polygon be <math>O</math>. The area of the equilateral triangle is <math>\frac{\sqrt{3}}{4}*196=49\sqrt{3}</math>. The area of one of the three smaller triangles, say <math>\triangle{DBE}</math> is <math>14\sqrt{3}</math>. Let <math>BH</math> be the altitude of <math>\triangle{DBE}</math>, so if we extend <math>BH</math> to point <math>M</math> where <math>MO\perp{BM}</math>, we get right triangle <math>\triangle{OMB}</math>. Note that the height <math>BH=2\sqrt{3}</math>, computed given the area and side length <math>14</math>, so <math>MB=MH+HB=\frac{7\sqrt{3}}{3}+2\sqrt{3}=\frac{13\sqrt{3}}{3}</math>. <math>OB=\frac{14\sqrt{3}}{3}</math> so Pythag gives <math>OM=\sqrt{OB^2-MB^2}=3</math>. This means that <math>HE=7-OM=4</math>, so Pythag gives <math>BE=2\sqrt{7}</math>. Let <math>\frac{\theta}{2}=\alpha</math> and the midpoint of <math>BE</math> be <math>P</math> so that <math>BP=PE=\sqrt{7}</math>, so that Pythag on <math>\triangle{OPE}</math> gives <math>OP=\sqrt{OE^2-PE^2}=\sqrt{\frac{175}{3}}</math>. Then <math>\tan{\alpha}=\frac{\sqrt{\frac{175}{3}}}{\sqrt{7}}=\frac{\sqrt{3}}{5}</math>. Then <math>\tan{2\alpha}=\tan{\theta}=\frac{\frac{2\sqrt{3}}{5}}{1-\frac{3}{25}}=\boxed{\frac{5\sqrt{3}}{11}}</math>. |
-Magnetoninja | -Magnetoninja |
Revision as of 21:24, 16 April 2025
Contents
Problem 19
Equilateral with side length
is rotated about its center by angle
, where
, to form
. See the figure. The area of hexagon
is
. What is
?
Solution 1
Let O be circumcenter of the equilateral triangle
Easily get
is invalid given
,
Solution 2
From 's side lengths of 14, we get
We let
And
The answer would be
Which area =
And area =
So we have that
Which means
Now, can be calculated using the addition identity, which gives the answer of
~mitsuihisashi14 ~luckuso (fixed Latex error )
Solution 3 (No Trig Manipulations)
Let the circumcenter of the circle inscribing this polygon be . The area of the equilateral triangle is
. The area of one of the three smaller triangles, say
is
. Let
be the altitude of
, so if we extend
to point
where
, we get right triangle
. Note that the height
, computed given the area and side length
, so
.
so Pythag gives
. This means that
, so Pythag gives
. Let
and the midpoint of
be
so that
, so that Pythag on
gives
. Then
. Then
.
-Magnetoninja
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=akLlCXKtXnk
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.