Difference between revisions of "2006 AIME II Problems/Problem 1"
(→Solution) |
(Formatting) (Tag: Undo) |
||
(13 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | |||
In [[convex polygon|convex]] [[hexagon]] <math>ABCDEF</math>, all six sides are congruent, <math>\angle A</math> and <math>\angle D</math> are [[right angle]]s, and <math>\angle B, \angle C, \angle E,</math> and <math>\angle F</math> are [[congruent]]. The area of the hexagonal region is <math>2116(\sqrt{2}+1).</math> Find <math>AB</math>. | In [[convex polygon|convex]] [[hexagon]] <math>ABCDEF</math>, all six sides are congruent, <math>\angle A</math> and <math>\angle D</math> are [[right angle]]s, and <math>\angle B, \angle C, \angle E,</math> and <math>\angle F</math> are [[congruent]]. The area of the hexagonal region is <math>2116(\sqrt{2}+1).</math> Find <math>AB</math>. | ||
− | == Solution == | + | == Solution 1 == |
+ | |||
Let the side length be called <math>x</math>, so <math>x=AB=BC=CD=DE=EF=AF</math>. | Let the side length be called <math>x</math>, so <math>x=AB=BC=CD=DE=EF=AF</math>. | ||
Line 11: | Line 13: | ||
Then we have to solve the equation | Then we have to solve the equation | ||
− | |||
− | |||
− | < | + | <cmath>2116(\sqrt{2}+1)=x^2\sqrt{2}+x^2</cmath> |
− | + | <cmath>2116(\sqrt{2}+1)=x^2(\sqrt{2}+1)</cmath> | |
− | < | + | <cmath>2116=x^2</cmath> |
− | + | <cmath>x=46</cmath> | |
− | < | ||
Therefore, <math>AB</math> is <math>\boxed{046}</math>. | Therefore, <math>AB</math> is <math>\boxed{046}</math>. | ||
− | == Solution == | + | == Solution 2 == |
Because <math>\angle | Because <math>\angle | ||
− | B</math>, <math>\angle C</math>, <math>\angle E</math>, and <math>\angle F</math> are congruent, the degree-measure of each of them is <math> | + | B</math>, <math>\angle C</math>, <math>\angle E</math>, and <math>\angle F</math> are congruent, the degree-measure of each of them is <math> |
− | {{720-2\cdot90}\over4}= 135</math>. Lines <math>BF</math> and <math>CE</math> divide the hexagonal region into two right triangles and a rectangle. Let <math>AB=x</math>. Then <math>BF=x\sqrt2</math>. Thus \begin{align*} | + | {{720-2\cdot90}\over4}= 135</math>. Lines <math>BF</math> and <math>CE</math> divide the hexagonal region into two right triangles and a rectangle. Let <math>AB=x</math>. Then <math>BF=x\sqrt2</math>. Thus |
+ | <cmath>\begin{align*} | ||
2116(\sqrt2+1)&=[ABCDEF]\\ | 2116(\sqrt2+1)&=[ABCDEF]\\ | ||
&=2\cdot {1\over2}x^2+x\cdot x\sqrt2=x^2(1+\sqrt2), | &=2\cdot {1\over2}x^2+x\cdot x\sqrt2=x^2(1+\sqrt2), | ||
− | \end{align*}so <math>x^2=2116</math>, and <math>x=\boxed{ | + | \end{align*}</cmath>so <math>x^2=2116</math>, and <math>x=\boxed{046}</math>. |
− | + | <asy> | |
− | pair A,B,C,D, | + | pair A,B,C,D,E,F; |
A=(0,0); | A=(0,0); | ||
B=(7,0); | B=(7,0); | ||
+ | C=(13,6); | ||
+ | E=(6,13); | ||
+ | D=(13,13); | ||
F=(0,7); | F=(0,7); | ||
− | |||
− | |||
− | |||
dot(A); | dot(A); | ||
dot(B); | dot(B); | ||
dot(C); | dot(C); | ||
dot(D); | dot(D); | ||
− | dot( | + | dot(E); |
dot(F); | dot(F); | ||
− | draw(A--B--C--D-- | + | draw(A--B--C--D--E--F--cycle,linewidth(0.7)); |
− | label("{\tiny | + | label("{\tiny $A$}",A,S); |
− | label("{\tiny | + | label("{\tiny $B$}",B,S); |
− | label("{\tiny | + | label("{\tiny $C$}",C,E); |
− | label("{\tiny | + | label("{\tiny $D$}",D,N); |
− | label("{\tiny | + | label("{\tiny $E$}",E,N); |
− | label("{\tiny | + | label("{\tiny $F$}",F,W); |
− | + | </asy> | |
+ | |||
+ | == See Also == | ||
− | |||
{{AIME box|year=2006|n=II|before=First Question|num-a=2}} | {{AIME box|year=2006|n=II|before=First Question|num-a=2}} | ||
− | |||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 18:40, 18 April 2025
Contents
Problem
In convex hexagon , all six sides are congruent,
and
are right angles, and
and
are congruent. The area of the hexagonal region is
Find
.
Solution 1
Let the side length be called , so
.
The diagonal . Then the areas of the triangles AFB and CDE in total are
,
and the area of the rectangle BCEF equals
Then we have to solve the equation
Therefore, is
.
Solution 2
Because ,
,
, and
are congruent, the degree-measure of each of them is
. Lines
and
divide the hexagonal region into two right triangles and a rectangle. Let
. Then
. Thus
so
, and
.
See Also
2006 AIME II (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.