Difference between revisions of "2021 WSMO Accuracy Round Problems"

 
Line 1: Line 1:
 
==Problem 1==
 
==Problem 1==
 +
 
Find the sum of all the positive integers <math>n</math> such that <math>n</math> is <math>\frac{2n^2-5n+5}{n-5}</math> an integer.
 
Find the sum of all the positive integers <math>n</math> such that <math>n</math> is <math>\frac{2n^2-5n+5}{n-5}</math> an integer.
  
Line 7: Line 8:
  
 
==Problem 2==
 
==Problem 2==
 +
 
A fair 20-sided die has faces labeled with the numbers <math>1,3,6,\dots,210</math>. Find the expected value of a single roll of this die.
 
A fair 20-sided die has faces labeled with the numbers <math>1,3,6,\dots,210</math>. Find the expected value of a single roll of this die.
  
Line 14: Line 16:
  
 
==Problem 3==  
 
==Problem 3==  
 +
 
If <math>f</math> is a monic polynomial of minimal degree with rational coefficients satisfying <math>f\left(3+\sqrt{5}\right)=0</math> and <math>f\left(4-\sqrt{7}\right)=0,</math> find the value of <math>|f(1)|</math>.
 
If <math>f</math> is a monic polynomial of minimal degree with rational coefficients satisfying <math>f\left(3+\sqrt{5}\right)=0</math> and <math>f\left(4-\sqrt{7}\right)=0,</math> find the value of <math>|f(1)|</math>.
  
Line 21: Line 24:
  
 
==Problem 4==
 
==Problem 4==
 +
 
A 12-hour clock has a minute hand that is the same length as the second hand, and an hour hand half the length of the minute hand. In a day, the tip of the minute hand travels a distance of <math>m,</math> the tip of the second hand travels a distance of <math>s,</math> and the tip of the hour hand travels a distance of <math>h.</math> The value of <math>\frac{m^2}{hs}</math> can be expressed as <math>\frac{a}{b}</math>, where <math>a</math> and <math>b</math> are relatively prime positive integers. Find <math>a+b</math>.
 
A 12-hour clock has a minute hand that is the same length as the second hand, and an hour hand half the length of the minute hand. In a day, the tip of the minute hand travels a distance of <math>m,</math> the tip of the second hand travels a distance of <math>s,</math> and the tip of the hour hand travels a distance of <math>h.</math> The value of <math>\frac{m^2}{hs}</math> can be expressed as <math>\frac{a}{b}</math>, where <math>a</math> and <math>b</math> are relatively prime positive integers. Find <math>a+b</math>.
  
Line 28: Line 32:
  
 
==Problem 5==
 
==Problem 5==
 +
 
Suppose regular octagon <math>ABCDEFGH</math> has side length <math>5.</math> If the distance from the center of the octagon to one of the sides can be expressed as <math>\frac{a+b\sqrt{c}}{d}</math> where <math>\gcd{(a,b,d)}=1</math> and <math>c</math> is not divisible by the square of any prime, find <math>a+b+c+d.</math>
 
Suppose regular octagon <math>ABCDEFGH</math> has side length <math>5.</math> If the distance from the center of the octagon to one of the sides can be expressed as <math>\frac{a+b\sqrt{c}}{d}</math> where <math>\gcd{(a,b,d)}=1</math> and <math>c</math> is not divisible by the square of any prime, find <math>a+b+c+d.</math>
  
Line 35: Line 40:
  
 
==Problem 6==
 
==Problem 6==
 +
 
Roy is baking a circular three tier cake. All of the tiers are centered around the same point. Each tier's radius is <math>\frac{3}{4}</math> of the radius of the tier below it, but the height of each tier stays constant. Roy wants to ice the cake, but only on the curved surfaces of the cake and the top of the smallest tier. The diameter of the lowest tier is <math>128</math> centimeters and its height is <math>10</math> centimeters. If the surface area that is iced can be expressed as <math>m\pi,</math> find <math>m.</math>
 
Roy is baking a circular three tier cake. All of the tiers are centered around the same point. Each tier's radius is <math>\frac{3}{4}</math> of the radius of the tier below it, but the height of each tier stays constant. Roy wants to ice the cake, but only on the curved surfaces of the cake and the top of the smallest tier. The diameter of the lowest tier is <math>128</math> centimeters and its height is <math>10</math> centimeters. If the surface area that is iced can be expressed as <math>m\pi,</math> find <math>m.</math>
  
Line 42: Line 48:
  
 
==Problem 7==
 
==Problem 7==
 +
 
Find the value of <math>\sum_{n=1}^{100}\left(\sum_{i=1}^{n}r_i\right),</math> where <math>r_i</math> is the remainder when <math>2^i+3^i</math> is divided by 10.
 
Find the value of <math>\sum_{n=1}^{100}\left(\sum_{i=1}^{n}r_i\right),</math> where <math>r_i</math> is the remainder when <math>2^i+3^i</math> is divided by 10.
  
Line 49: Line 56:
  
 
==Problem 8==
 
==Problem 8==
 +
 
20 unit spheres are stacked in a triangular pyramid formation, such that the first layer has 1 sphere, the second layer has 3 spheres, the third layer has 6 spheres, and the fourth layer has 10 spheres. The radius of the smallest sphere that fully contains all of these spheres is <math>\frac{a\sqrt{b}+c}{d},</math> where <math>\gcd{(a,c,d)}=1</math> and <math>b</math> is not divisible by the square of any prime. Find <math>a+b+c+d.</math>
 
20 unit spheres are stacked in a triangular pyramid formation, such that the first layer has 1 sphere, the second layer has 3 spheres, the third layer has 6 spheres, and the fourth layer has 10 spheres. The radius of the smallest sphere that fully contains all of these spheres is <math>\frac{a\sqrt{b}+c}{d},</math> where <math>\gcd{(a,c,d)}=1</math> and <math>b</math> is not divisible by the square of any prime. Find <math>a+b+c+d.</math>
  
Line 56: Line 64:
  
 
==Problem 9==
 
==Problem 9==
 +
 
Let <math>x=1+\frac{5}{2+\frac{3}{2+\frac{3}{2+\ldots}}}.</math>
 
Let <math>x=1+\frac{5}{2+\frac{3}{2+\frac{3}{2+\ldots}}}.</math>
 
If <math>\sqrt{x+\sqrt{x+\sqrt{x+\ldots}}}</math> can be written as <math>\frac{a+\sqrt{b}}{c},</math> where <math>b</math> is not divisible by the square of any prime, find <math>a+b+c.</math>
 
If <math>\sqrt{x+\sqrt{x+\sqrt{x+\ldots}}}</math> can be written as <math>\frac{a+\sqrt{b}}{c},</math> where <math>b</math> is not divisible by the square of any prime, find <math>a+b+c.</math>
Line 64: Line 73:
  
 
==Problem 10==
 
==Problem 10==
 +
 
The largest value of <math>x</math> that satisfies the equation <math>5x^2-7\lfloor x\rfloor\{x\}=\frac{26\lfloor x\rfloor^2}{5}</math> can be expressed as <math>\frac{a+b\sqrt{c}}{d},</math> where <math>c</math> is not divisible by the square of any prime and <math>\gcd(a,b,d)=1.</math> Find <math>a+b+c+d.</math> (<math>\{x\}</math> denotes the fractional part of <math>x</math>, or <math>x-\lfloor x\rfloor</math>.)
 
The largest value of <math>x</math> that satisfies the equation <math>5x^2-7\lfloor x\rfloor\{x\}=\frac{26\lfloor x\rfloor^2}{5}</math> can be expressed as <math>\frac{a+b\sqrt{c}}{d},</math> where <math>c</math> is not divisible by the square of any prime and <math>\gcd(a,b,d)=1.</math> Find <math>a+b+c+d.</math> (<math>\{x\}</math> denotes the fractional part of <math>x</math>, or <math>x-\lfloor x\rfloor</math>.)
  

Latest revision as of 15:17, 2 May 2025

Problem 1

Find the sum of all the positive integers $n$ such that $n$ is $\frac{2n^2-5n+5}{n-5}$ an integer.

Proposed by pinkpig

Solution

Problem 2

A fair 20-sided die has faces labeled with the numbers $1,3,6,\dots,210$. Find the expected value of a single roll of this die.

Proposed by pinkpig

Solution

Problem 3

If $f$ is a monic polynomial of minimal degree with rational coefficients satisfying $f\left(3+\sqrt{5}\right)=0$ and $f\left(4-\sqrt{7}\right)=0,$ find the value of $|f(1)|$.

Proposed by pinkpig

Solution

Problem 4

A 12-hour clock has a minute hand that is the same length as the second hand, and an hour hand half the length of the minute hand. In a day, the tip of the minute hand travels a distance of $m,$ the tip of the second hand travels a distance of $s,$ and the tip of the hour hand travels a distance of $h.$ The value of $\frac{m^2}{hs}$ can be expressed as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Find $a+b$.

Proposed by pinkpig

Solution

Problem 5

Suppose regular octagon $ABCDEFGH$ has side length $5.$ If the distance from the center of the octagon to one of the sides can be expressed as $\frac{a+b\sqrt{c}}{d}$ where $\gcd{(a,b,d)}=1$ and $c$ is not divisible by the square of any prime, find $a+b+c+d.$

Proposed by mahaler

Solution

Problem 6

Roy is baking a circular three tier cake. All of the tiers are centered around the same point. Each tier's radius is $\frac{3}{4}$ of the radius of the tier below it, but the height of each tier stays constant. Roy wants to ice the cake, but only on the curved surfaces of the cake and the top of the smallest tier. The diameter of the lowest tier is $128$ centimeters and its height is $10$ centimeters. If the surface area that is iced can be expressed as $m\pi,$ find $m.$

Proposed by sanaops9

Solution

Problem 7

Find the value of $\sum_{n=1}^{100}\left(\sum_{i=1}^{n}r_i\right),$ where $r_i$ is the remainder when $2^i+3^i$ is divided by 10.

Proposed by pinkpig

Solution

Problem 8

20 unit spheres are stacked in a triangular pyramid formation, such that the first layer has 1 sphere, the second layer has 3 spheres, the third layer has 6 spheres, and the fourth layer has 10 spheres. The radius of the smallest sphere that fully contains all of these spheres is $\frac{a\sqrt{b}+c}{d},$ where $\gcd{(a,c,d)}=1$ and $b$ is not divisible by the square of any prime. Find $a+b+c+d.$

Proposed by pinkpig

Solution

Problem 9

Let $x=1+\frac{5}{2+\frac{3}{2+\frac{3}{2+\ldots}}}.$ If $\sqrt{x+\sqrt{x+\sqrt{x+\ldots}}}$ can be written as $\frac{a+\sqrt{b}}{c},$ where $b$ is not divisible by the square of any prime, find $a+b+c.$

Proposed by mahaler

Solution

Problem 10

The largest value of $x$ that satisfies the equation $5x^2-7\lfloor x\rfloor\{x\}=\frac{26\lfloor x\rfloor^2}{5}$ can be expressed as $\frac{a+b\sqrt{c}}{d},$ where $c$ is not divisible by the square of any prime and $\gcd(a,b,d)=1.$ Find $a+b+c+d.$ ($\{x\}$ denotes the fractional part of $x$, or $x-\lfloor x\rfloor$.)

Proposed by pinkpig

Solution