Difference between revisions of "2023 SSMO Relay Round 3 Problems"
Line 4: | Line 4: | ||
[[2023 SSMO Relay Round 1 Problems/Problem 1|Solution]] | [[2023 SSMO Relay Round 1 Problems/Problem 1|Solution]] | ||
+ | |||
==Problem 2== | ==Problem 2== | ||
Line 14: | Line 15: | ||
[[2023 SSMO Relay Round 1 Problems/Problem 2|Solution]] | [[2023 SSMO Relay Round 1 Problems/Problem 2|Solution]] | ||
+ | |||
==Problem 3== | ==Problem 3== | ||
Let <math>T=</math> TNYWR. Let <math>n = N+1.</math> A spray painter has a paint gun that paints all areas within a radius of <math>2.</math> The spray painter walks in the following locations, where red lines indicate red paint coming out of the gun and blue lines indicate blue paint coming out of the gun. The spray painter starts from the outermost square and works his way inwards, where in the end. The positive difference between the area of the blue-painted region and the area of the red-painted region is <math>a+b\pi.</math> Find <math>a+b.</math> (Note: if a spray painter paints an area with multiple colors, only the last color will be showing). | Let <math>T=</math> TNYWR. Let <math>n = N+1.</math> A spray painter has a paint gun that paints all areas within a radius of <math>2.</math> The spray painter walks in the following locations, where red lines indicate red paint coming out of the gun and blue lines indicate blue paint coming out of the gun. The spray painter starts from the outermost square and works his way inwards, where in the end. The positive difference between the area of the blue-painted region and the area of the red-painted region is <math>a+b\pi.</math> Find <math>a+b.</math> (Note: if a spray painter paints an area with multiple colors, only the last color will be showing). | ||
− | + | ||
+ | <asy> | ||
unitsize(7mm); | unitsize(7mm); | ||
Line 91: | Line 94: | ||
dot((-6,0)); | dot((-6,0)); | ||
</asy> | </asy> | ||
− | |||
[[2023 SSMO Relay Round 1 Problems/Problem 3|Solution]] | [[2023 SSMO Relay Round 1 Problems/Problem 3|Solution]] |
Latest revision as of 15:25, 2 May 2025
Problem 1
In triangle with
, circles
and
are drawn, centered at
and
, respectively. Each of the three circles are externally tangent to the two other circles. If the radius of a circle
such that
is internally tangent to
and
is
for relatively prime positive integers
and
, find
Problem 2
Let TNYWR. In triangle
with circumradius and inradius having lengths
and
respectively. Given that
the maximum value of
is
for squarefree
find
(Note that
)
Problem 3
Let TNYWR. Let
A spray painter has a paint gun that paints all areas within a radius of
The spray painter walks in the following locations, where red lines indicate red paint coming out of the gun and blue lines indicate blue paint coming out of the gun. The spray painter starts from the outermost square and works his way inwards, where in the end. The positive difference between the area of the blue-painted region and the area of the red-painted region is
Find
(Note: if a spray painter paints an area with multiple colors, only the last color will be showing).