Difference between revisions of "2022 AIME I Problems/Problem 14"
(Created page with ".") |
(→Solution (Geometry Part)) |
||
(37 intermediate revisions by 13 users not shown) | |||
Line 1: | Line 1: | ||
− | . | + | ==Problem== |
+ | Given <math>\triangle ABC</math> and a point <math>P</math> on one of its sides, call line <math>\ell</math> the <math>\textit{splitting line}</math> of <math>\triangle ABC</math> through <math>P</math> if <math>\ell</math> passes through <math>P</math> and divides <math>\triangle ABC</math> into two polygons of equal perimeter. Let <math>\triangle ABC</math> be a triangle where <math>BC = 219</math> and <math>AB</math> and <math>AC</math> are positive integers. Let <math>M</math> and <math>N</math> be the midpoints of <math>\overline{AB}</math> and <math>\overline{AC},</math> respectively, and suppose that the splitting lines of <math>\triangle ABC</math> through <math>M</math> and <math>N</math> intersect at <math>30^\circ.</math> Find the perimeter of <math>\triangle ABC.</math> | ||
+ | |||
+ | ==The Geometry Part - Solution 1== | ||
+ | |||
+ | Consider the splitting line through <math>M</math>. Extend <math>D</math> on ray <math>BC</math> such that <math>CD=CA</math>. Then the splitting line bisects segment <math>BD</math>, so in particular it is the midline of triangle <math>ABD</math> and thus it is parallel to <math>AD</math>. But since triangle <math>ACD</math> is isosceles, we can easily see <math>AD</math> is parallel to the angle bisector of <math>C</math>, so the splitting line is also parallel to this bisector, and similar for the splitting line through <math>N</math>. Some simple angle chasing reveals the condition is now equivalent to <math>\angle A=120^\circ</math>. | ||
+ | |||
+ | - MortemEtInteritum | ||
+ | |||
+ | ==The Geometry Part - Solution 2== | ||
+ | |||
+ | Let <math>PM</math> and <math>QN</math> be the splitting lines. Reflect <math>B</math> across <math>Q</math> to be <math>B'</math> and <math>C</math> across <math>P</math> to be <math>C'</math>. Take <math>S_B</math> and <math>S_C</math>, which are spiral similarity centers on the other side of <math>BC</math> as <math>A</math> such that <math>\triangle S_BB'C \sim \triangle S_BBA</math> and <math>\triangle S_CC'B \sim \triangle S_CCA</math>. This gets that because <math>\angle S_BCB = \angle S_BCB' = \angle S_BAB</math> and <math>\angle S_CBC = \angle S_CBC' = \angle S_CAC</math>, then <math>S_B</math> and <math>S_C</math> are on <math>\triangle ABC</math>'s circumcircle. Now, we know that <math>\triangle S_BBB' \sim \triangle S_BAC</math> and <math>\triangle S_CCC' \sim \triangle S_CAB</math> so because <math>BA=B'C</math> and <math>CA=C'B</math>, then <math>S_BB=SBB'</math> and <math>S_CC=S_CC'</math> and <math>S_BQ \perp BC</math> and <math>S_CP \perp BC</math>. | ||
+ | |||
+ | We also notice that because <math>Q</math> and <math>N</math> correspond on <math>\triangle S_BBB'</math> and <math>\triangle S_BAC</math>, and because <math>P</math> and <math>M</math> correspond on <math>\triangle S_CCC' </math> and <math>\triangle S_CAB</math>, then the angle formed by <math>NQ</math> and <math>BA</math> is equal to the angle formed by <math>B'C</math> and <math>NQ</math> which is equal to <math>\angle BS_BQ = \angle QS_BB'</math>. Thus, <math>\angle CBA=2\angle CQN</math>. Similarly, <math>\angle BCA = 2\angle QPM</math> and so <math>\angle CBA + \angle BCA = 2\angle PQN + 2\angle QPM = 60^{\circ}</math> and <math>\angle A = 120^{\circ}</math>. | ||
+ | |||
+ | - kevinmathz | ||
+ | |||
+ | ==The NT Part== | ||
+ | |||
+ | We now need to solve <math>a^2+ab+b^2 = 3^2\cdot 73^2</math>. A quick <math>(\bmod 9)</math> check gives that <math>3\mid a</math> and <math>3\mid b</math>. Thus, it's equivalent to solve <math>x^2+xy+y^2 = 73^2</math>. | ||
+ | |||
+ | Let <math>\omega</math> be one root of <math>\omega^2+\omega+1=0</math>. Then, recall that <math>\mathbb Z[\omega]</math> is the ring of integers of <math>\mathbb Q[\sqrt{-3}]</math> and is a unique factorization domain. Notice that <math>N(x-y\omega) = (x-y\omega)(x-y\omega^2) = x^2+xy+y^2</math>. Therefore, it suffices to find an element of <math>\mathbb Z[\omega]</math> with the norm <math>73^2</math>. | ||
+ | |||
+ | To do so, we factor <math>73</math> in <math>\mathbb Z[\omega]</math>. Since it's <math>1\pmod 3</math>, it must split. A quick inspection gives <math>73 = (8-\omega)(8-\omega^2)</math>. Thus, <math>N(8-\omega) = 73</math>, so | ||
+ | <cmath>\begin{align*} | ||
+ | 73^2 &= N((8-\omega)^2) \\ | ||
+ | &= N(64 - 16\omega + \omega^2) \\ | ||
+ | &= N(64 - 16\omega + (-1-\omega)) \\ | ||
+ | &= N(63 - 17\omega), | ||
+ | \end{align*}</cmath> | ||
+ | giving the solution <math>x=63</math> and <math>y=17</math>, yielding <math>a=189</math> and <math>b=51</math>, so the sum is <math>\boxed{459}</math>. Since <math>8-\omega</math> and <math>8-\omega^2</math> are primes in <math>\mathbb Z[\omega]</math>, the solution must divide <math>73^2</math>. One can then easily check that this is the unique solution. | ||
+ | |||
+ | - MarkBcc168 | ||
+ | |||
+ | ==Solution (Geometry + Number Theory)== | ||
+ | |||
+ | Denote <math>BC = a</math>, <math>CA = b</math>, <math>AB = c</math>. | ||
+ | |||
+ | Let the splitting line of <math>\triangle ABC</math> through <math>M</math> (resp. <math>N</math>) crosses <math>\triangle ABC</math> at another point <math>X</math> (resp. <math>Y</math>). | ||
+ | |||
+ | WLOG, we assume <math>c \leq b</math>. | ||
+ | |||
+ | <math>\textbf{Case 1}</math>: <math>a \leq c \leq b</math>. | ||
+ | |||
+ | We extend segment <math>AB</math> to <math>D</math>, such that <math>BD = a</math>. | ||
+ | We extend segment <math>AC</math> to <math>E</math>, such that <math>CE = a</math>. | ||
+ | |||
+ | In this case, <math>X</math> is the midpoint of <math>AE</math>, and <math>Y</math> is the midpoint of <math>AD</math>. | ||
+ | |||
+ | Because <math>M</math> and <math>X</math> are the midpoints of <math>AB</math> and <math>AE</math>, respectively, <math>MX \parallel BE</math>. | ||
+ | Because <math>N</math> and <math>Y</math> are the midpoints of <math>AC</math> and <math>AD</math>, respectively, <math>NY \parallel CD</math>. | ||
+ | |||
+ | Because <math>CB = CE</math>, <math>\angle CBE =\angle CEB = \frac{\angle ACB}{2}</math>. | ||
+ | Because <math>BC = BD</math>, <math>\angle BCD = \angle BDC = \frac{\angle ABC}{2}</math>. | ||
+ | |||
+ | Let <math>BE</math> and <math>CD</math> intersect at <math>O</math>. | ||
+ | Because <math>MX \parallel BE</math> and <math>NY \parallel CD</math>, the angle formed between lines <math>MX</math> and <math>NY</math> is congruent to <math>\angle BOD</math>. Hence, <math>\angle BOD = 30^\circ</math> or <math>150^\circ</math>. | ||
+ | |||
+ | We have | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \angle BOD & = \angle CBE + \angle BCD \\ | ||
+ | & = \frac{\angle ACB}{2} + \frac{\angle ABC}{2} \\ | ||
+ | & = 90^\circ - \frac{\angle A}{2} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Hence, we must have <math>\angle BOD = 30^\circ</math>, not <math>150^\circ</math>. | ||
+ | Hence, <math>\angle A = 120^\circ</math>. | ||
+ | |||
+ | This implies <math>a > b</math> and <math>a >c</math>. This contradicts the condition specified for this case. | ||
+ | |||
+ | Therefore, this case is infeasible. | ||
+ | |||
+ | <math>\textbf{Case 2}</math>: <math>c \leq a \leq b</math>. | ||
+ | |||
+ | We extend segment <math>CB</math> to <math>D</math>, such that <math>BD = c</math>. | ||
+ | We extend segment <math>AC</math> to <math>E</math>, such that <math>CE = a</math>. | ||
+ | |||
+ | In this case, <math>X</math> is the midpoint of <math>AE</math>, and <math>Y</math> is the midpoint of <math>CD</math>. | ||
+ | |||
+ | Because <math>M</math> and <math>X</math> are the midpoints of <math>AB</math> and <math>AE</math>, respectively, <math>MX \parallel BE</math>. | ||
+ | Because <math>N</math> and <math>Y</math> are the midpoints of <math>AC</math> and <math>CD</math>, respectively, <math>NY \parallel AD</math>. | ||
+ | |||
+ | Because <math>CB = CE</math>, <math>\angle CBE =\angle CEB = \frac{\angle ACB}{2}</math>. | ||
+ | Because <math>BA = BD</math>, <math>\angle BAD = \angle BDA = \frac{\angle ABC}{2}</math>. | ||
+ | |||
+ | Let <math>O</math> be a point of <math>AC</math>, such that <math>BO \parallel AD</math>. | ||
+ | Hence, <math>\angle OBC = \angle BDA = \frac{B}{2}</math>. | ||
+ | |||
+ | Because <math>MX \parallel BE</math> and <math>NY \parallel AD</math> and <math>AD \parallel BO</math>, the angle formed between lines <math>MX</math> and <math>NY</math> is congruent to <math>\angle OBE</math>. Hence, <math>\angle OBE = 30^\circ</math> or <math>150^\circ</math>. | ||
+ | |||
+ | We have | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \angle OBE & = \angle OBC + \angle CBE \\ | ||
+ | & = \frac{\angle ABC}{2} + \frac{\angle ACB}{2} \\ | ||
+ | & = 90^\circ - \frac{\angle A}{2} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Hence, we must have <math>\angle OBE = 30^\circ</math>, not <math>150^\circ</math>. | ||
+ | Hence, <math>\angle A = 120^\circ</math>. | ||
+ | |||
+ | This implies <math>a > b</math> and <math>a >c</math>. This contradicts the condition specified for this case. | ||
+ | |||
+ | Therefore, this case is infeasible. | ||
+ | |||
+ | <math>\textbf{Case 3}</math>: <math>c \leq b \leq a</math>. | ||
+ | |||
+ | We extend segment <math>CB</math> to <math>D</math>, such that <math>BD = c</math>. | ||
+ | We extend segment <math>BC</math> to <math>E</math>, such that <math>CE = b</math>. | ||
+ | |||
+ | In this case, <math>X</math> is the midpoint of <math>BE</math>, and <math>Y</math> is the midpoint of <math>CD</math>. | ||
+ | |||
+ | Because <math>M</math> and <math>X</math> are the midpoints of <math>AB</math> and <math>BE</math>, respectively, <math>MX \parallel AE</math>. | ||
+ | Because <math>N</math> and <math>Y</math> are the midpoints of <math>AC</math> and <math>CD</math>, respectively, <math>NY \parallel AD</math>. | ||
+ | |||
+ | Because <math>CA = CE</math>, <math>\angle CAE =\angle CEB = \frac{\angle ACB}{2}</math>. | ||
+ | Because <math>BA = BD</math>, <math>\angle BAD = \angle BDA = \frac{\angle ABC}{2}</math>. | ||
+ | |||
+ | Because <math>MX \parallel AE</math> and <math>NY \parallel AD</math>, the angle formed between lines <math>MX</math> and <math>NY</math> is congruent to <math>\angle DAE</math>. Hence, <math>\angle DAE = 30^\circ</math> or <math>150^\circ</math>. | ||
+ | |||
+ | We have | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \angle DAE & = \angle BAD + \angle CAE + \angle BAC \\ | ||
+ | & = \frac{\angle ABC}{2} + \frac{\angle ACB}{2} + \angle BAC \\ | ||
+ | & = 90^\circ + \frac{\angle BAC}{2} . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Hence, we must have <math>\angle OBE = 150^\circ</math>, not <math>30^\circ</math>. | ||
+ | Hence, <math>\angle BAC = 120^\circ</math>. | ||
+ | |||
+ | In <math>\triangle ABC</math>, by applying the law of cosines, we have | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | a^2 & = b^2 + c^2 - 2bc \cos \angle BAC\\ | ||
+ | & = b^2 + c^2 - 2bc \cos 120^\circ \\ | ||
+ | & = b^2 + c^2 + bc . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Because <math>a = 219</math>, we have | ||
+ | <cmath> | ||
+ | \[ | ||
+ | b^2 + c^2 + bc = 219^2 . | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Now, we find integer solution(s) of this equation with <math>c \leq b</math>. | ||
+ | |||
+ | Multiplying this equation by 4, we get | ||
+ | <cmath> | ||
+ | \[ | ||
+ | \left( 2 c + b \right)^2 + 3 b^2 = 438^2 . \hspace{1cm} (1) | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Denote <math>d = 2 c + b</math>. Because <math>c \leq b</math>, <math>b < d \leq 3 b</math>. | ||
+ | |||
+ | Because <math>438^2 - 3 b^2 \equiv 0 \pmod{3}</math>, <math>d^2 \equiv 0 \pmod{3}</math>. | ||
+ | Thus, <math>d \equiv 0 \pmod{3}</math>. | ||
+ | This implies <math>d^2 \equiv 0 \pmod{9}</math>. | ||
+ | |||
+ | We also have <math>438^2 \equiv 0 \pmod{9}</math>. | ||
+ | Hence, <math>3 b^2 \equiv 0 \pmod{9}</math>. | ||
+ | This implies <math>b \equiv 0 \pmod{3}</math>. | ||
+ | |||
+ | Denote <math>b = 3 p</math> and <math>d = 3 q</math>. Hence, <math>p < q \leq 3 p</math>. | ||
+ | Hence, Equation (1) can be written as | ||
+ | <cmath> | ||
+ | \[ | ||
+ | q^2 + 3 p^2 = 146^2 . \hspace{1cm} (2) | ||
+ | \] | ||
+ | </cmath> | ||
+ | |||
+ | Now, we solve this equation. | ||
+ | |||
+ | First, we find an upper bound of <math>q</math>. | ||
+ | |||
+ | We have <math>q^2 + 3 p^2 \geq q^2 + 3 \left( \frac{q}{3} \right)^2 = \frac{4 q^2}{3}</math>. | ||
+ | Hence, <math>\frac{4 q^2}{3} \leq 146^2</math>. | ||
+ | Hence, <math>q \leq 73 \sqrt{3} < 73 \cdot 1.8 = 131.4</math>. | ||
+ | Because <math>q</math> is an integer, we must have <math>q \leq 131</math>. | ||
+ | |||
+ | Second, we find a lower bound of <math>q</math>. | ||
+ | |||
+ | We have <math>q^2 + 3 p^2 < q^2 + 3 q^2 = 4 q^2</math>. | ||
+ | Hence, <math>4 q^2 > 146^2</math>. | ||
+ | Hence, <math>q > 73</math>. | ||
+ | Because <math>q</math> is an integer, we must have <math>q \geq 74</math>. | ||
+ | |||
+ | Now, we find the integer solutions of <math>p</math> and <math>q</math> that satisfy Equation (2) with <math>74 \leq q \leq 131</math>. | ||
+ | |||
+ | First, modulo 9, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | q^2 & \equiv 146^2 - 3 p^2 \\ | ||
+ | & \equiv 4 - 3 \cdot ( 0 \mbox{ or } 1 ) \\ | ||
+ | & \equiv 4 \mbox{ or } 1 . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Hence <math>q \equiv \pm 1, \pm 2 \pmod{9}</math>. | ||
+ | |||
+ | Second, modulo 5, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | q^2 & \equiv 146^2 - 3 p^2 \\ | ||
+ | & \equiv 1 + 2 p^2 \\ | ||
+ | & \equiv 1 + 2 \cdot ( 0 \mbox{ or } 1 \mbox{ or } -1 ) \\ | ||
+ | & \equiv 1 \mbox{ or } 3 \mbox{ or } - 1 . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Because <math>q^2 \equiv 0 \mbox{ or } 1 \mbox{ or } - 1</math>, we must have <math>q^2 \equiv 1 \mbox{ or } - 1</math>. | ||
+ | Hence, <math>5 \nmid q</math>. | ||
+ | |||
+ | Third, modulo 7, | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | q^2 & \equiv 146^2 - 3 p^2 \\ | ||
+ | & \equiv 1 - 3 \cdot ( 0 \mbox{ or } 1 \mbox{ or } 5 \mbox{ or } 2 ) \\ | ||
+ | & \equiv 1 \mbox{ or } 2 \mbox{ or } 3 \mbox{ or } 5 . | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | |||
+ | Because <math>q^2 \equiv 0 \mbox{ or } 1 \mbox{ or } 2 \mbox{ or } 4 \pmod{ 7 }</math>, we must have <math>q^2 \equiv 1 \mbox{ or } 2 \pmod{7}</math>. | ||
+ | Hence, <math>q \equiv 1, 3, 4, 6 \pmod{7}</math>. | ||
+ | |||
+ | Given all conditions above, the possible <math>q</math> are 74, 83, 88, 92, 97, 101, 106, 109, 116, 118, 127. | ||
+ | |||
+ | By testing all these numbers, we find that the only solution is <math>q = 97</math>. | ||
+ | This implies <math>p = 63</math>. | ||
+ | |||
+ | Hence, <math>b = 3p = 189</math> and <math>d = 3q = 291</math>. | ||
+ | Hence, <math>c = \frac{d - b}{2} = 51</math>. | ||
+ | |||
+ | Therefore, the perimeter of <math>\triangle ABC</math> is <math>b + c + a = 189 + 51 + 219 = \boxed{\textbf{(459) }}</math>. | ||
+ | |||
+ | ~Steven Chen (www.professorchenedu.com) | ||
+ | |||
+ | |||
+ | ==Solution (Number Theory Part)== | ||
+ | We wish to solve the Diophantine equation <math>a^2+ab+b^2=3^2 \cdot 73^2</math>. It can be shown that <math>3|a</math> and <math>3|b</math>, so we make the substitution <math>a=3x</math> and <math>b=3y</math> to obtain <math>x^2+xy+y^2=73^2</math> as our new equation to solve for. | ||
+ | |||
+ | Notice that <math>r^2+r+1=(r-\omega)(r-{\omega}^2)</math>, where <math>\omega=e^{i\frac{2\pi}{3}}</math>. Thus, | ||
+ | <cmath>x^2+xy+y^2 = y^2((x/y)^2+(x/y)+1) = y^2 (\frac{x}{y}-\omega)(\frac{x}{y}-{\omega}^2) = (x-y\omega)(x-y{\omega}^2).</cmath> | ||
+ | |||
+ | Note that <math>8^2+1^2+8 \cdot 1=73</math>. Thus, <math>(8-\omega)(8-{\omega}^2)=73</math>. Squaring both sides yields | ||
+ | <cmath>\begin{align} | ||
+ | (8-\omega)^2(8-{\omega}^2)^2&=73^2\\ | ||
+ | (63-17\omega)(63-17{\omega}^2)&=73^2. | ||
+ | \end{align}</cmath> | ||
+ | Thus, by <math>(2)</math>, <math>(63, 17)</math> is a solution to <math>x^2+xy+y^2=73^2</math>. This implies that <math>a=189</math> and <math>b=51</math>, so our final answer is <math>189+51+219=\boxed{459}</math>. | ||
+ | |||
+ | ~ Leo.Euler | ||
+ | |||
+ | ==Solution(Visual geometry)== | ||
+ | [[File:AIME-I-2022-14a.png|400px|right]] | ||
+ | [[File:AIME-I-2022-14b.png|400px|right]] | ||
+ | [[File:AIME-I-2022-14c.png|400px|right]] | ||
+ | We look at upper and middle diagrams and get <math>\angle BAC = 120^\circ</math>. | ||
+ | |||
+ | Next we use only the lower Diagram. Let <math>I</math> be incenter <math>\triangle ABC</math>, E be midpoint of biggest arc <math>\overset{\Large\frown} {BC}.</math> | ||
+ | Then bisector <math>AI</math> cross circumcircle <math>\triangle ABC</math> at point <math>E</math>. Quadrilateral <math>ABEC</math> is cyclic, so | ||
+ | <cmath> \angle BEC = 180^\circ - \angle ABC = 60^\circ \implies BE = CE = IE = BC.</cmath> | ||
+ | <cmath>AE \cdot BC = AB \cdot CE + AC \cdot BE \implies AE = AB + AC</cmath> | ||
+ | <math>\implies AI +EI = AB + AC, \hspace{10mm} AI = AB+ AC – BC</math> is integer. | ||
+ | <cmath>AI = \frac {2AB \cdot AC \cdot cos \angle CAI}{AB+AC + BC} = \frac {AB \cdot AC}{AB+AC + BC} =</cmath> | ||
+ | <cmath>= AB + AC – BC \implies AC^2 + AB^2 + AB \cdot AC = BC^2.</cmath> | ||
+ | A quick <math>(\mod9)</math> check gives that <math>3\mid AC</math> and <math>3\mid AB</math>. | ||
+ | <cmath>AI \le A_0I_0 = EA_0 – EI_0 = \frac{2 BC}{\sqrt{3}} – BC = \frac {2 - \sqrt{3}}{\sqrt{3}} BC = 33.88.</cmath> | ||
+ | Denote <math>a= \frac {BC}{3}= 73, b = \frac {AC}{3}, c = \frac {AB}{3}, l = \frac {AI}{3} \le 11.</math> | ||
+ | |||
+ | We have equations in integers | ||
+ | <math>\frac{bc}{a+b+c} = b + c – a = l \le 11.</math> | ||
+ | |||
+ | The solution <math>(b > c)</math> is | ||
+ | <cmath>b = \frac{a + l +\sqrt{a^2 – 6al – 3l^2}}{2}, | ||
+ | c = \frac{a + l -\sqrt{a^2 – 6al – 3l^2}}{2}.</cmath> | ||
+ | Suppose, <math>a^2 – 6al – 3l^2 = (a – 3l – t)^2 \implies \frac {12l^2}{t} + t + 6l= 2a = 146.</math> | ||
+ | |||
+ | Now we check all possible <math>t = {2,3,4,6,12, ml}.</math> | ||
+ | |||
+ | Case <math>t = 2 \implies 6l^2 + 6l = 146 – 2 \implies l^2 + l = 24 \implies \O </math> | ||
+ | |||
+ | Case <math>t = 3 \implies 4l^2 + 6l = 146 – 3 = 143\implies \O.</math> | ||
+ | |||
+ | Case <math>t = 4 \implies 3l^2 + 6l = 146 – 4 =142 \implies \O.</math> | ||
+ | |||
+ | Case <math>t = 6 \implies 2l^2 + 6l = 146 – 6 = 140 \implies l = 7, b = 63, c = 17.</math> | ||
+ | |||
+ | Case <math>t = 12 \implies l^2 + 6l = 146 – 12 = 134 \implies \O.</math> | ||
+ | |||
+ | Case <math>t = ml \implies \frac{12l}{m} + 6l + ml = 146 \implies \frac{12}{m} + 6 + m = \frac{73 \cdot 2}{l}\implies \O.</math> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Solution (The Geometry Part Using Menelaus)== | ||
+ | [[File:2022AIME1.png|500px]] | ||
+ | |||
+ | Let the 2 splitting lines crossing <math>N</math> and <math>M</math> cross <math>BC</math> at <math>G</math> and <math>H</math>. Extend <math>AB</math> and <math>NG</math> so that the two lines intersect at <math>E</math> and extend <math>AC</math> and <math>MH</math> so that the two lines intersect at <math>F</math>. Let <math>a</math>,<math>b</math>,<math>c</math> be the corresponding side lengths for <math>\angle A</math>,<math>\angle B</math>,<math>\angle C</math>. According to the question, <math>MH</math> and <math>NG</math> creates two sections of <math>\triangle ABC</math> of equal perimeter, we could list out the equations: | ||
+ | |||
+ | <math>BG+C=a-BG</math> | ||
+ | |||
+ | <math>CH+b=a-BH</math> | ||
+ | |||
+ | <math>BG+GH+CH=a</math> | ||
+ | |||
+ | This results in: | ||
+ | |||
+ | <math>BG=\frac{a-c}{2}</math> | ||
+ | |||
+ | <math>CH=\frac{a-b}{2}</math> | ||
+ | |||
+ | <math>GH=\frac{b+c}{2}</math> | ||
+ | |||
+ | Now, we can apply the Menelaus Theorem to <math>\triangle ABC</math>. | ||
+ | Let <math>BE = x</math>: | ||
+ | <cmath>\frac{BE}{AE}\cdot\frac{AN}{CN}\cdot\frac{CG}{BG} = 1</cmath> | ||
+ | <cmath>\frac{x}{x+c}\cdot1\cdot\frac{\frac{a+c}{2}}{\frac{a-c}{2}} = 1</cmath> | ||
+ | <cmath>\frac{x}{x+c}\cdot\frac{a+c}{a-c} = 1</cmath> | ||
+ | <cmath>\frac{x+c}{x}=\frac{a+c}{a-c}</cmath> | ||
+ | <cmath>\frac{c}{x}=\frac{2c}{a-c}</cmath> | ||
+ | <cmath>BE=x=\frac{a-c}{2}=BG</cmath> | ||
+ | Similarly, <math>CF=CH</math>. | ||
+ | |||
+ | Therefore, <math>\angle BGE = \angle E</math> and <math>\angle CHF = \angle F</math>. Because the splitting lines of <math>\triangle ABC</math> through <math>M</math> and <math>N</math> intersect at <math>30^\circ</math>, <math>\angle NOF</math> = <math>30^\circ</math>. <math>\angle BGE+\angle CHF=\angle BGE+\angle CHF=\angle NOF=30^\circ</math>. | ||
+ | |||
+ | We conclude that <math>\angle A=360^\circ-\angle E-\angle F-\angle EOF(reflex)=360^\circ-30^\circ-210^\circ=120^\circ</math> | ||
+ | |||
+ | Apply the Law of Cosines on <math>\triangle ABC</math> | ||
+ | |||
+ | <math>c^2+a^2-2ac\cos 120^\circ=219^2</math> | ||
+ | |||
+ | <math>a^2+c^2+ac=219^2=47961</math> | ||
+ | |||
+ | To find the final answer, you would only need to solve this equation, which steps could be found in previous solutions. | ||
+ | |||
+ | ~cassphe | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/T6zq1e1RZdg | ||
+ | |||
+ | ~MathProblemSolvingSkills.com | ||
+ | |||
+ | |||
+ | ==Video Solution== | ||
+ | |||
+ | https://www.youtube.com/watch?v=kkous52vPps&t=3023s | ||
+ | |||
+ | ~Steven Chen (wwww.professorchenedu.com) | ||
+ | |||
+ | ==Animated Video Solution== | ||
+ | https://youtu.be/o-aDdxdnTWY | ||
+ | |||
+ | ~Star League (https://starleague.us) | ||
+ | |||
+ | ==See Also== | ||
+ | {{AIME box|year=2022|n=I|num-b=13|num-a=15}} | ||
+ | |||
+ | [[Category:Intermediate Geometry Problems]] | ||
+ | [[Category:Intermediate Number Theory Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 04:07, 4 May 2025
Contents
- 1 Problem
- 2 The Geometry Part - Solution 1
- 3 The Geometry Part - Solution 2
- 4 The NT Part
- 5 Solution (Geometry + Number Theory)
- 6 Solution (Number Theory Part)
- 7 Solution(Visual geometry)
- 8 Solution (The Geometry Part Using Menelaus)
- 9 Video Solution
- 10 Video Solution
- 11 Animated Video Solution
- 12 See Also
Problem
Given and a point
on one of its sides, call line
the
of
through
if
passes through
and divides
into two polygons of equal perimeter. Let
be a triangle where
and
and
are positive integers. Let
and
be the midpoints of
and
respectively, and suppose that the splitting lines of
through
and
intersect at
Find the perimeter of
The Geometry Part - Solution 1
Consider the splitting line through . Extend
on ray
such that
. Then the splitting line bisects segment
, so in particular it is the midline of triangle
and thus it is parallel to
. But since triangle
is isosceles, we can easily see
is parallel to the angle bisector of
, so the splitting line is also parallel to this bisector, and similar for the splitting line through
. Some simple angle chasing reveals the condition is now equivalent to
.
- MortemEtInteritum
The Geometry Part - Solution 2
Let and
be the splitting lines. Reflect
across
to be
and
across
to be
. Take
and
, which are spiral similarity centers on the other side of
as
such that
and
. This gets that because
and
, then
and
are on
's circumcircle. Now, we know that
and
so because
and
, then
and
and
and
.
We also notice that because and
correspond on
and
, and because
and
correspond on
and
, then the angle formed by
and
is equal to the angle formed by
and
which is equal to
. Thus,
. Similarly,
and so
and
.
- kevinmathz
The NT Part
We now need to solve . A quick
check gives that
and
. Thus, it's equivalent to solve
.
Let be one root of
. Then, recall that
is the ring of integers of
and is a unique factorization domain. Notice that
. Therefore, it suffices to find an element of
with the norm
.
To do so, we factor in
. Since it's
, it must split. A quick inspection gives
. Thus,
, so
giving the solution
and
, yielding
and
, so the sum is
. Since
and
are primes in
, the solution must divide
. One can then easily check that this is the unique solution.
- MarkBcc168
Solution (Geometry + Number Theory)
Denote ,
,
.
Let the splitting line of through
(resp.
) crosses
at another point
(resp.
).
WLOG, we assume .
:
.
We extend segment to
, such that
.
We extend segment
to
, such that
.
In this case, is the midpoint of
, and
is the midpoint of
.
Because and
are the midpoints of
and
, respectively,
.
Because
and
are the midpoints of
and
, respectively,
.
Because ,
.
Because
,
.
Let and
intersect at
.
Because
and
, the angle formed between lines
and
is congruent to
. Hence,
or
.
We have
Hence, we must have , not
.
Hence,
.
This implies and
. This contradicts the condition specified for this case.
Therefore, this case is infeasible.
:
.
We extend segment to
, such that
.
We extend segment
to
, such that
.
In this case, is the midpoint of
, and
is the midpoint of
.
Because and
are the midpoints of
and
, respectively,
.
Because
and
are the midpoints of
and
, respectively,
.
Because ,
.
Because
,
.
Let be a point of
, such that
.
Hence,
.
Because and
and
, the angle formed between lines
and
is congruent to
. Hence,
or
.
We have
Hence, we must have , not
.
Hence,
.
This implies and
. This contradicts the condition specified for this case.
Therefore, this case is infeasible.
:
.
We extend segment to
, such that
.
We extend segment
to
, such that
.
In this case, is the midpoint of
, and
is the midpoint of
.
Because and
are the midpoints of
and
, respectively,
.
Because
and
are the midpoints of
and
, respectively,
.
Because ,
.
Because
,
.
Because and
, the angle formed between lines
and
is congruent to
. Hence,
or
.
We have
Hence, we must have , not
.
Hence,
.
In , by applying the law of cosines, we have
Because , we have
Now, we find integer solution(s) of this equation with .
Multiplying this equation by 4, we get
Denote . Because
,
.
Because ,
.
Thus,
.
This implies
.
We also have .
Hence,
.
This implies
.
Denote and
. Hence,
.
Hence, Equation (1) can be written as
Now, we solve this equation.
First, we find an upper bound of .
We have .
Hence,
.
Hence,
.
Because
is an integer, we must have
.
Second, we find a lower bound of .
We have .
Hence,
.
Hence,
.
Because
is an integer, we must have
.
Now, we find the integer solutions of and
that satisfy Equation (2) with
.
First, modulo 9,
Hence .
Second, modulo 5,
Because , we must have
.
Hence,
.
Third, modulo 7,
Because , we must have
.
Hence,
.
Given all conditions above, the possible are 74, 83, 88, 92, 97, 101, 106, 109, 116, 118, 127.
By testing all these numbers, we find that the only solution is .
This implies
.
Hence, and
.
Hence,
.
Therefore, the perimeter of is
.
~Steven Chen (www.professorchenedu.com)
Solution (Number Theory Part)
We wish to solve the Diophantine equation . It can be shown that
and
, so we make the substitution
and
to obtain
as our new equation to solve for.
Notice that , where
. Thus,
Note that . Thus,
. Squaring both sides yields
Thus, by
,
is a solution to
. This implies that
and
, so our final answer is
.
~ Leo.Euler
Solution(Visual geometry)
We look at upper and middle diagrams and get .
Next we use only the lower Diagram. Let be incenter
, E be midpoint of biggest arc
Then bisector
cross circumcircle
at point
. Quadrilateral
is cyclic, so
is integer.
A quick
check gives that
and
.
Denote
We have equations in integers
The solution is
Suppose,
Now we check all possible
Case
Case
Case
Case
Case
Case
vladimir.shelomovskii@gmail.com, vvsss
Solution (The Geometry Part Using Menelaus)
Let the 2 splitting lines crossing and
cross
at
and
. Extend
and
so that the two lines intersect at
and extend
and
so that the two lines intersect at
. Let
,
,
be the corresponding side lengths for
,
,
. According to the question,
and
creates two sections of
of equal perimeter, we could list out the equations:
This results in:
Now, we can apply the Menelaus Theorem to .
Let
:
Similarly,
.
Therefore, and
. Because the splitting lines of
through
and
intersect at
,
=
.
.
We conclude that
Apply the Law of Cosines on
To find the final answer, you would only need to solve this equation, which steps could be found in previous solutions.
~cassphe
Video Solution
~MathProblemSolvingSkills.com
Video Solution
https://www.youtube.com/watch?v=kkous52vPps&t=3023s
~Steven Chen (wwww.professorchenedu.com)
Animated Video Solution
~Star League (https://starleague.us)
See Also
2022 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.