Difference between revisions of "1976 IMO Problems/Problem 6"
(New page: == Problem == {{problem}} == Solution == {{solution}} == See also == {{IMO box|year=1976|num-b=1|num-a=3}}) |
(→Solution) |
||
(9 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | {{ | + | A sequence <math>(u_{n})</math> is defined by |
+ | |||
+ | <cmath>u_{0} = 2 \quad u_{1} = \frac {5}{2}, u_{n + 1} = u_{n}(u_{n - 1}^{2} - 2) - u_{1} \ \text{ for } n = 1,\cdots</cmath> | ||
+ | |||
+ | Prove that for any positive integer <math>n</math> we have | ||
+ | |||
+ | <cmath>\lfloor u_{n} \rfloor = 2^{\frac {(2^{n} - ( - 1)^{n})}{3}}</cmath> | ||
+ | |||
+ | (where <math>\lfloor x\rfloor</math> denotes the smallest integer <math>\leq</math> <math>x</math>)<math>.</math> | ||
== Solution == | == Solution == | ||
− | {{ | + | |
+ | Let the sequence <math>(x_n)_{n \geq 0}</math> be defined as | ||
+ | <cmath>x_{0}=0,x_{1}=1, x_{n}=x_{n-1}+2x_{n-2}</cmath> | ||
+ | We notice | ||
+ | <cmath>x_n=\frac{2^n-(-1)^n}{3}</cmath> | ||
+ | Because the roots of the characteristic polynomial <math>x_{n}=x_{n-1}+2x_{n-2}</math> are <math>-1</math> and <math>2</math>. | ||
+ | |||
+ | We also see <math>\frac{2^1-(-1)^1}{3}=1=x_1</math>, <math>\frac{2^2-(-1)^2}{3}=1=x_2</math> | ||
+ | We want to prove | ||
+ | <cmath>2^{x_{n}-2x_{n-1}}+2^{-x_{n}+2x_{n-1}}=2^{x_1}+2^{-x_1}</cmath> | ||
+ | This is done by induction | ||
+ | |||
+ | Base Case: | ||
+ | For <math>n=1</math> ses det <math>2^{1-0}+2^{0-1}=2^{1}+2^{-1}</math> | ||
+ | |||
+ | Inductive step: | ||
+ | Assume <math>2^{x_{n-1}-2x_{n-2}}+2^{-x_{n-1}+2x_{n-2}}=2^{x_1}+2^{-x_1}</math> | ||
+ | We notice | ||
+ | <cmath>\begin{align*} | ||
+ | 2^{x_{n}-2x_{n-1}}+2^{-x_{n}+2x_{n-1}} &=2^{x_{n-1}+2x_{n-2}-2x_{n-1}}+2^{-(x_{n-1}+2x_{n-2})+2x_{n-1}}\\ | ||
+ | &=2^{-x_{n-1}+2x_{n-2}}+2^{x_{n-1}-2x_{n-2}}\\ | ||
+ | &=2^{x_1}+2^{-x_1} | ||
+ | \end{align*}</cmath> | ||
+ | We then want to show | ||
+ | <cmath>a_n=2^{x_n}+2^{-x_n}</cmath> | ||
+ | This can be done using induction | ||
+ | |||
+ | Base Case | ||
+ | |||
+ | For <math>n=1</math>, it is clear that <cmath>a_1=\frac{5}{2}</cmath> and <cmath>2^{x_1}+2^{-x_1}=2^1+2^{-1}=2+\frac{1}{2}=\frac{5}{2}</cmath> Therefore, the base case is proved. | ||
+ | |||
+ | Inductive Step | ||
+ | |||
+ | Assume for all natural <math>k<n</math> at <math>a_k=2^{x_k}+2^{-x_k}</math>\newline | ||
+ | Then we have that: | ||
+ | <cmath>\begin{align*} | ||
+ | a_n &= a_{n}(a_{n-1}^{2}-2)-a_{1} \\ | ||
+ | &= (2^{x_{n-1}}+2^{-x_{n-1}})((2^{x_{n-2}}+2^{-x_{n-2}})^2-2)-(2^{x_{1}}+2^{-x_{0}}) \\ | ||
+ | &= (2^{x_{n-1}}+2^{-x_{n-1}})((2^{x_{n-2}})^2+(2^{-x_{n-2}})^2+2*2^{x_{n-2}}*2^{-x_{n-2}}-2)-(2^{x_{1}}+2^{-x_{0}}) \\ | ||
+ | &=(2^{x_{n-1}}+2^{-x_{n-1}})((2^{2x_{n-2}})+(2^{-2x_{n-2}})+2*2^{x_{n-2}-x_{n-2}}-2)-(2^{x_{1}}+2^{-x_{0}}) \\ | ||
+ | &=(2^{x_{n-1}}+2^{-x_{n-1}})((2^{2x_{n-2}})+(2^{-2x_{n-2}})+2-2)-(2^{x_{1}}+2^{-x_{0}}) \\ | ||
+ | &=2^{x_{n-1}}*2^{2x_{n-2}}+2^{-x_{n-1}}2^{-2x_{n-2}}+2^{x_{n-1}}*2^{-2x_{n-2}}+2^{-x_{n-1}}*2^{2x_{n-2}}-2^{x_{1}}-2^{-x_{0}}\\ | ||
+ | &=2^{x_{n-1}+2x_{n-2}}+2^{-(x_{n-1}+2x_{n-2}})+2^{x_{n-1}-2x_{n-2}}+2^{-x_{n-1}+2x_{n-2}}-2^{x_{1}}-2^{-x_{0}}\\ | ||
+ | &=2^{x_{n}}+2^{-x_{n}}+2^{x_{n-1}-2x_{n-2}}+2^{-x_{n-1}+2x_{n-2}}-2^{x_{1}}-2^{-x_{0}} | ||
+ | \end{align*}</cmath> | ||
+ | From our first induction proof we have that: | ||
+ | <cmath>2^{x_{n-1}-2x_{n-2}}+2^{-x_{n-1}+2x_{n-2}}=2^{x_1}+2^{-x_1}</cmath> | ||
+ | Then: | ||
+ | <cmath>a_n=2^{x_n}+2^{-x_n}+2^{x_1}+2^{-x_1}-(2^{x_1}+2^{-x_1})=2^{x_n}+2^{-x_n}</cmath> | ||
+ | We notice | ||
+ | <math>\left[a_n\right]=\left[2^{x_n}+2^{-x_n}\right]=2^{x_n}</math>, Because <math>2^{x_n} \in \mathbb{N}</math> and <math>2^{-x_n}<1</math>, for all <math>n>0</math> | ||
+ | Finally we conclude | ||
+ | <cmath>\left[a_n\right]=2^{\frac{2^n-(-1)^n}{3}}</cmath> | ||
+ | |||
+ | ==Solution 2== | ||
+ | |||
+ | We note that there is a slightly easier claim that can be proved also by induction. By testing out smaller terms, one sees that | ||
+ | |||
+ | <cmath>u_n= 2^{\frac{2^n-(-1)^n}{3}} + 2^{- \frac{2^n-(-1)^n}{3}}</cmath> | ||
+ | |||
+ | for <math>n=1,2,3</math> (note that since we are using strong induction to prove this result this suffices as the base case). | ||
+ | |||
+ | Suppose that the equation above holds for all <math>k \le n</math>. Then for <math>n+1</math>, one have | ||
+ | |||
+ | <cmath>\begin{align*} | ||
+ | u_{n+1} &= u_n (u_{n-1} ^2 -2) -u_1 \\ | ||
+ | &= (2^{\frac{2^n-(-1)^n}{3}}+2^{- \frac{2^n-(-1)^n}{3}}) \cdot ( (2^{\frac{2^{n-1}-(-1)^{n-1}}{3}}+2^{- \frac{2^{n-1}-(-1)^{n-1}}{3}} )^2 -2) - \frac{5}{2} \\ | ||
+ | &= (2^{\frac{2^n-(-1)^n}{3}}+2^{- \frac{2^n-(-1)^n}{3}}) \cdot ( (2^{\frac{2^{n-1}-(-1)^{n-1}}{3}})^2 + (2^{- \frac{2^{n-1}-(-1)^{n-1}}{3}})^2 )- \frac{5}{2} \\ | ||
+ | &= (2^{\frac{2^n-(-1)^n}{3}}+2^{- \frac{2^n-(-1)^n}{3}}) \cdot (2^{\frac{2^{n}-2 \cdot (-1)^{n-1}}{3}} + 2^{- \frac{2^{n}-2 \cdot (-1)^{n-1}}{3}})- \frac{5}{2} \\ | ||
+ | &= 2^{\frac{2^n-(-1)^n}{3} + \frac{2^{n}-2 \cdot (-1)^{n-1}}{3}} + 2^{- \frac{2^n-(-1)^n}{3} - \frac{2^{n}-2 \cdot (-1)^{n-1}}{3}} + 2^{(-1)^n} + 2^{-(-1)^n} -\frac{5}{2} \\ | ||
+ | &= 2^{\frac{2^n-(-1)^n}{3} + \frac{2^{n}-2 \cdot (-1)^{n-1}}{3}} + 2^{- \frac{2^n-(-1)^n}{3} - \frac{2^{n}-2 \cdot (-1)^{n-1}}{3}} \\ | ||
+ | &= 2^{\frac{2^{n+1}-(-1)^{n+1}}{3}}+2^{- \frac{2^{n+1}-(-1)^{n+1}}{3}} | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | as desired. The strong induction proves our claim. Now, it is rather obvious that <math>2^{- \frac{2^n-(-1)^n}{3}}</math> is between 0 and 1, so indeed our claim proves the result. <math>\square</math> | ||
+ | |||
+ | ~[[Ddk001]] | ||
+ | |||
== See also == | == See also == | ||
− | {{IMO box|year=1976|num-b= | + | {{IMO box|year=1976|num-b=5|after=Final Question}} |
Latest revision as of 20:57, 28 May 2025
Contents
Problem
A sequence is defined by
Prove that for any positive integer we have
(where denotes the smallest integer
)
Solution
Let the sequence be defined as
We notice
Because the roots of the characteristic polynomial
are
and
.
We also see ,
We want to prove
This is done by induction
Base Case:
For ses det
Inductive step:
Assume
We notice
We then want to show
This can be done using induction
Base Case
For , it is clear that
and
Therefore, the base case is proved.
Inductive Step
Assume for all natural at
\newline
Then we have that:
From our first induction proof we have that:
Then:
We notice
, Because
and
, for all
Finally we conclude
Solution 2
We note that there is a slightly easier claim that can be proved also by induction. By testing out smaller terms, one sees that
for (note that since we are using strong induction to prove this result this suffices as the base case).
Suppose that the equation above holds for all . Then for
, one have
as desired. The strong induction proves our claim. Now, it is rather obvious that is between 0 and 1, so indeed our claim proves the result.
See also
1976 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Final Question |
All IMO Problems and Solutions |