Difference between revisions of "1996 AIME Problems/Problem 13"
(→See also) |
m (→See also) |
||
(10 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | {{ | + | In [[triangle]] <math>ABC</math>, <math>AB=\sqrt{30}</math>, <math>AC=\sqrt{6}</math>, and <math>BC=\sqrt{15}</math>. There is a point <math>D</math> for which <math>\overline{AD}</math> [[bisect]]s <math>\overline{BC}</math>, and <math>\angle ADB</math> is a right angle. The ratio <math>\frac{[ADB]}{[ABC]}</math> can be written in the form <math>\dfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. |
+ | |||
== Solution == | == Solution == | ||
− | {{ | + | <center><asy> |
+ | pointpen = black; pathpen = black + linewidth(0.7); | ||
+ | pair B=(0,0), C=(15^.5, 0), A=IP(CR(B,30^.5),CR(C,6^.5)), E=(B+C)/2, D=foot(B,A,E); | ||
+ | D(MP("A",A)--MP("B",B,SW)--MP("C",C)--A--MP("D",D)--B); D(MP("E",E)); | ||
+ | MP("\sqrt{30}",(A+B)/2,NW); MP("\sqrt{6}",(A+C)/2,SE); MP("\frac{\sqrt{15}}2",(E+C)/2); D(rightanglemark(B,D,A)); | ||
+ | </asy></center> | ||
+ | Let <math>E</math> be the midpoint of <math>\overline{BC}</math>. Since <math>BE = EC</math>, then <math>\triangle ABE</math> and <math>\triangle AEC</math> share the same height and have equal bases, and thus have the same area. Similarly, <math>\triangle BDE</math> and <math>BAE</math> share the same height, and have bases in the ratio <math>DE : AE</math>, so <math>\frac{[BDE]}{[BAE]} = \frac{DE}{AE}</math> (see [[area ratios]]). Now, | ||
+ | |||
+ | <center><math>\dfrac{[ADB]}{[ABC]} = \frac{[ABE] + [BDE]}{2[ABE]} = \frac{1}{2} + \frac{DE}{2AE}.</math></center> | ||
+ | |||
+ | By [[Stewart's Theorem]], <math>AE = \frac{\sqrt{2(AB^2 + AC^2) - BC^2}}2 = \frac{\sqrt {57}}{2}</math>, and by the [[Pythagorean Theorem]] on <math>\triangle ABD, \triangle EBD</math>, | ||
+ | |||
+ | <cmath>\begin{align*} | ||
+ | BD^2 + \left(DE + \frac {\sqrt{57}}2\right)^2 &= 30 \\ | ||
+ | BD^2 + DE^2 &= \frac{15}{4} \\ | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | Subtracting the two equations yields <math>DE\sqrt{57} + \frac{57}{4} = \frac{105}{4} \Longrightarrow DE = \frac{12}{\sqrt{57}}</math>. Then <math>\frac mn = \frac{1}{2} + \frac{DE}{2AE} = \frac{1}{2} + \frac{\frac{12}{\sqrt{57}}}{2 \cdot \frac{\sqrt{57}}{2}} = \frac{27}{38}</math>, and <math>m+n = \boxed{065}</math>. | ||
+ | |||
+ | |||
+ | == Solution 2== | ||
+ | Because the problem asks for a ratio, we can divide each side length by <math>\sqrt{3}</math> to make things simpler. We now have a triangle with sides <math>\sqrt{10}</math>, <math>\sqrt{5}</math>, and <math>\sqrt{2}</math>. | ||
+ | |||
+ | We use the same graph as above. | ||
+ | |||
+ | Draw perpendicular from <math>C</math> to <math>AE</math>. Denote this point as <math>F</math>. We know that <math>DE = EF = x</math> and <math>BD = CF = z</math> and also let <math>AE = y</math>. | ||
+ | |||
+ | Using Pythagorean theorem, we get three equations, | ||
+ | |||
+ | <center><math>(y+x)^2 + z^2 = 10</math> | ||
+ | |||
+ | <math>(y-x)^2 + z^2 = 2</math> | ||
+ | |||
+ | <math>x^2 + z^2 = \frac{5}{4}</math></center> | ||
+ | |||
+ | Adding the first and second, we obtain <math>x^2 + y^2 + z^2 = 6</math>, and then subtracting the third from this we find that <math>y = \frac{\sqrt{19}}{2}</math>. (Note, we could have used [[Stewart's Theorem]] to achieve this result). | ||
+ | |||
+ | Subtracting the first and second, we see that <math>xy = 2</math>, and then we find that <math>x = \frac{4}{\sqrt{19}}</math> | ||
+ | |||
+ | Using base ratios, we then quickly find that the desired ratio is <math>\frac{27}{38}</math> so our answer is <math>\boxed{065}</math> | ||
+ | |||
== See also == | == See also == | ||
− | + | If you study from PW ioqm 2025 batch this question is also included in dpp 3 of quadrilaterals and circles (sorry anyone if this is considered promotion I am just trying to help my fellow mates) | |
+ | {{AIME box|year=1996|num-b=12|num-a=14}} | ||
− | {{ | + | [[Category:Intermediate Geometry Problems]] |
+ | {{MAA Notice}} |
Latest revision as of 06:11, 13 June 2025
Contents
Problem
In triangle ,
,
, and
. There is a point
for which
bisects
, and
is a right angle. The ratio
can be written in the form
, where
and
are relatively prime positive integers. Find
.
Solution
![[asy] pointpen = black; pathpen = black + linewidth(0.7); pair B=(0,0), C=(15^.5, 0), A=IP(CR(B,30^.5),CR(C,6^.5)), E=(B+C)/2, D=foot(B,A,E); D(MP("A",A)--MP("B",B,SW)--MP("C",C)--A--MP("D",D)--B); D(MP("E",E)); MP("\sqrt{30}",(A+B)/2,NW); MP("\sqrt{6}",(A+C)/2,SE); MP("\frac{\sqrt{15}}2",(E+C)/2); D(rightanglemark(B,D,A)); [/asy]](http://latex.artofproblemsolving.com/7/e/9/7e995d2f972dad7f2aefe99478218d9c0a690451.png)
Let be the midpoint of
. Since
, then
and
share the same height and have equal bases, and thus have the same area. Similarly,
and
share the same height, and have bases in the ratio
, so
(see area ratios). Now,
![$\dfrac{[ADB]}{[ABC]} = \frac{[ABE] + [BDE]}{2[ABE]} = \frac{1}{2} + \frac{DE}{2AE}.$](http://latex.artofproblemsolving.com/1/2/a/12a88550c43fd7bd333f379af275aa2895d4102e.png)
By Stewart's Theorem, , and by the Pythagorean Theorem on
,
Subtracting the two equations yields . Then
, and
.
Solution 2
Because the problem asks for a ratio, we can divide each side length by to make things simpler. We now have a triangle with sides
,
, and
.
We use the same graph as above.
Draw perpendicular from to
. Denote this point as
. We know that
and
and also let
.
Using Pythagorean theorem, we get three equations,


Adding the first and second, we obtain , and then subtracting the third from this we find that
. (Note, we could have used Stewart's Theorem to achieve this result).
Subtracting the first and second, we see that , and then we find that
Using base ratios, we then quickly find that the desired ratio is so our answer is
See also
If you study from PW ioqm 2025 batch this question is also included in dpp 3 of quadrilaterals and circles (sorry anyone if this is considered promotion I am just trying to help my fellow mates)
1996 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.