Difference between revisions of "1991 AHSME Problems/Problem 30"
(→Problem) |
Growingdaisy (talk | contribs) (→Solution 2 (PIE)) |
||
(17 intermediate revisions by 4 users not shown) | |||
Line 3: | Line 3: | ||
For any set <math>S</math>, let <math>|S|</math> denote the number of elements in <math>S</math>, and let <math>n(S)</math> be the number of subsets of <math>S</math>, including the empty set and the set <math>S</math> itself. If <math>A</math>, <math>B</math>, and <math>C</math> are sets for which <math>n(A)+n(B)+n(C)=n(A\cup B\cup C)</math> and <math>|A|=|B|=100</math>, then what is the minimum possible value of <math>|A\cap B\cap C|</math>? | For any set <math>S</math>, let <math>|S|</math> denote the number of elements in <math>S</math>, and let <math>n(S)</math> be the number of subsets of <math>S</math>, including the empty set and the set <math>S</math> itself. If <math>A</math>, <math>B</math>, and <math>C</math> are sets for which <math>n(A)+n(B)+n(C)=n(A\cup B\cup C)</math> and <math>|A|=|B|=100</math>, then what is the minimum possible value of <math>|A\cap B\cap C|</math>? | ||
− | <math>(A) 96 \ | + | <math>(A) 96 \ (B) 97 \ (C) 98 \ (D) 99 \ (E) 100</math> |
− | == Solution == | + | == Solution 1== |
− | <math>n(A)=n(B)=2^{100}</math>, so | + | <math>n(A)=n(B)=2^{100}</math>, so <math>n(C)</math> and <math>n(A \cup B \cup C)</math> are integral powers of <math>2</math> <math>\Longrightarrow</math> <math>n(C)=2^{101}</math> and <math>n(A \cup B \cup C)=2^{102}</math>. Let <math>A=\{s_1,s_2,s_3,...,s_{100}\}</math>, <math>B=\{s_3,s_4,s_5,...,s_{102}\}</math>, and <math>C=\{s_1,s_2,s_3,...,s_{k-2},s_{k-1},s_{k+1},s_{k+2},...,s_{100},s_{101},s_{102}\}</math> where <math>s_k \in A \cap B</math> |
Thus, the minimum value of <math>|A\cap B \cap C|</math> is <math>\fbox{B=97}</math> | Thus, the minimum value of <math>|A\cap B \cap C|</math> is <math>\fbox{B=97}</math> | ||
+ | |||
+ | ==Solution 2 (PIE) == | ||
+ | |||
+ | As <math>|A|=|B|=100</math>, <math>n(A)=n(B)=2^{100}.</math> | ||
+ | |||
+ | Because we're given that <math>n(A)+n(B)+n(C)=n(A \cup B \cup C)</math>, we know that<math>2^{|A|}+2^{|B|}+2^{|C|}=2^{|A \cup B \cup C|}</math>, so we can write | ||
+ | |||
+ | <cmath>2^{100}+2^{100}+2^{|C|}=2^{|A \cup B \cup C|}</cmath> | ||
+ | <cmath>\Rightarrow 2^{101}+2^{|C|}=2^{|A \cup B \cup C|}</cmath> | ||
+ | |||
+ | Because <math>|C|</math> and <math>|A \cup B \cup C|</math> are integers, <math>|C|=101</math> and <math>|A \cup B \cup C| = 102.</math> | ||
+ | |||
+ | |||
+ | By the [[Principle of Inclusion-Exclusion]], <math>|A \cup B| = |A| + |B| - |A \cap B| = 200 - |A \cap B|.</math> | ||
+ | |||
+ | Since <math>|A|=|B| \le |A \cup B| \le |A \cup B \cup C|</math>, we know <math>100 \le |A \cup B| \le 102</math>, so <math>98 \le |A \cap B| \le 100.</math> | ||
+ | |||
+ | |||
+ | By the [[Principle of Inclusion-Exclusion]], <math>|A \cup C| = |A| + |C| - |A \cap C| = 201 - |A \cap C|.</math> | ||
+ | |||
+ | Since <math>|C| \le |A \cup C| \le |A \cup B \cup C|</math>, we know <math>101 \le |A \cup C| \le 102</math>, so <math>99 \le |A \cap C| \le 100.</math> | ||
+ | |||
+ | |||
+ | By the [[Principle of Inclusion-Exclusion]], <math>|B \cup C| = |B| + |C| - |B \cap C| = 201 - |B \cap C|.</math> | ||
+ | |||
+ | Since <math>|C| \le |B \cup C| \le |A \cup B \cup C|</math>, we know <math>101 \le |B \cup C| \le 102</math>,so <math>99 \le |B \cap C| \le 100.</math> | ||
+ | |||
+ | |||
+ | By the [[Principle of Inclusion-Exclusion]], | ||
+ | |||
+ | \begin{align} | ||
+ | |A \cap B \cap C| &= |A \cup B \cup C| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C| \\ | ||
+ | &= 102 - 100 - 100 - 101 + |A \cap B| + |A \cap C| + |B \cap C| \\ | ||
+ | &= |A \cap B| + |A \cap C| + |B \cap C| - 199 | ||
+ | \end{align} | ||
+ | |||
+ | |||
+ | Therefore, | ||
+ | <cmath>98 + 99 + 99 - 199 \le |A \cap B \cap C| \le 100+100+100-199</cmath> | ||
+ | |||
+ | <cmath>\Rightarrow \boxed{\textbf{97}} \le |A \cap B \cap C| \le 101.</cmath> | ||
+ | |||
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ||
+ | |||
+ | ~formatting- growingdaisy | ||
+ | |||
+ | ==Solution 3== | ||
+ | |||
+ | Represent the elements of <math>A, B, C</math> as an ordered <math>102</math>-tuple of <math>0</math>'s and <math>1</math>'s. <math>A</math> and <math>B</math> contain exactly <math>100</math> <math>1</math>'s, while <math>C</math> contains <math>101</math> <math>1</math>'s. We want to minimize the number of <math>3</math>'s after summing the numbers in the respective positions of these <math>102</math>-tuples. In the most optimal situation, all positions of the resultant tuple contains at least a <math>2</math>; this leaves <math>100+100+101-2\times102=97</math> positions with a <math>3</math>. Thus, the minimum value is <math>\boxed{B: 97}</math>, with construction given in the above solutions. | ||
+ | |||
+ | -cretinouscretin | ||
== See also == | == See also == |
Latest revision as of 13:11, 20 June 2025
Problem
For any set , let
denote the number of elements in
, and let
be the number of subsets of
, including the empty set and the set
itself. If
,
, and
are sets for which
and
, then what is the minimum possible value of
?
Solution 1
, so
and
are integral powers of
and
. Let
,
, and
where
Thus, the minimum value of
is
Solution 2 (PIE)
As ,
Because we're given that , we know that
, so we can write
Because and
are integers,
and
By the Principle of Inclusion-Exclusion,
Since , we know
, so
By the Principle of Inclusion-Exclusion,
Since , we know
, so
By the Principle of Inclusion-Exclusion,
Since , we know
,so
By the Principle of Inclusion-Exclusion,
\begin{align} |A \cap B \cap C| &= |A \cup B \cup C| - |A| - |B| - |C| + |A \cap B| + |A \cap C| + |B \cap C| \\ &= 102 - 100 - 100 - 101 + |A \cap B| + |A \cap C| + |B \cap C| \\ &= |A \cap B| + |A \cap C| + |B \cap C| - 199 \end{align}
Therefore,
~formatting- growingdaisy
Solution 3
Represent the elements of as an ordered
-tuple of
's and
's.
and
contain exactly
's, while
contains
's. We want to minimize the number of
's after summing the numbers in the respective positions of these
-tuples. In the most optimal situation, all positions of the resultant tuple contains at least a
; this leaves
positions with a
. Thus, the minimum value is
, with construction given in the above solutions.
-cretinouscretin
See also
1991 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Problem 30 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.